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Laplace transform numerical inversion
Bruno Josso - Leif Larsen

1 Laplace transform numerical inversion issue
When running an analytical liquid rate simulation on a bounded reservoir an artefact due to
Laplace transform numerical inversion algorithm can be noticed. This issue can be illustrated
with a simple example: liquid rate simulation on a closed circular homogeneous reservoir with a
fracture. The details of the simulation are graphically given in Figure 1(a). The simulation results
can be seen in Figure 1(b).

At first, results seem coherent with what can be expected, but if one checks the mean pres-
sure from closer in Figure 1(b) (the yellow curve in the graph at the bottom), one can see that
whereas this pressure should monotonously decrease towards a fixed value (around 1000 psia) as
the reservoir is depleted, it starts to increase slowly between years 2016 and 2017. In Figure 2(a),
one can follow the problem from even closer and see that the simulated rate, instead of exponen-
tially decrease towards 0 as expected, becomes negative at the end of 2015. Such results would
mean that one swaps from production to injection mode after this date, which is not the case.

The simulation artefact can also be spotted on the pressure LogLog plot. Hence, it can be seen
in Figure 2(b), that at late time, a break appears on the pressure plot (in white). Unfortunately,
according to the simulation parameters, one should see a unity slope straight line without any
distortion.

In the present case, both simulation and theory do not match. The conclusion is that the simu-
lation gives a wrong result and what is observed here is not a normal behaviour. The simulation
is the result of a numerical inversion of a function defined in the Laplace domain. The function
is relatively complex here, and we thought at first that the problem was caused either by a bug
in the calculation kernel, or by another issue hidden somewhere in Topaze. But it appears that a
very similar result can be obtained when inverting an exponential function with a Gaver-Stehfest
algorithm taken from an independent implementation.
Indeed: the problem does directly come from the numerical inversion algorithm.

After reminding a few definitions regarding the Laplace transform, we will simplify the problem and
study several algorithms behaviour when applied on a very simple example. We will eventually
see what can be done in the context of reservoir engineering.
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(a) Analytical liquid rate simulation configuration.

(b) Analytical liquid rate simulation on a bounded reservoir results.

Figure 1: Simulation configuration and results.
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(a) Simulation results seen from closer at late time.

(b) Simulation results seen on a LogLog plot

Figure 2: Simulation results.
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2 The Laplace transform
2.1 Direct transform
Let f(t) be a function with a real argument t ∈ R. The bilateral Laplace transform of f(t) is
L [f(t)] = F̂ (p), with p ∈ C being the Laplace complex argument. The Laplace transform is defined
as follows:

F̂ (p) =

∫ +∞

−∞
f(t)e−ptdt (1)

In practice, one more commonly uses the unilateral Laplace transform expressed as follows1:

F̂ (p) =

∫ +∞

0

f(t)e−ptdt (3)

The Laplace argument p can explicitly be written: p = σ + i2πν with (σ, ν) ∈ R2. Now, if FT [.] is the
Fourier transform operator, one can then write that the Fourier transform of the function f(t)e−σt

is equal to the Laplace transform L [f(t)]:

L [f(t)] = F̂ (σ + i2πν) =

∫ +∞

−∞

[
f(t)e−σt

]
e−2iπνtdt = FT

[
f(t)e−σt

]
(4)

Equation (4), is the key point when considering the implementation of the Laplace transform
and its inverse. Indeed, very fast algorithms exist that very efficiently perform Discrete Fourier
Transform (DFT [.]).

2.2 Inverse transform
The inverse Laplace transform can easily be expressed by referring to the Fourier transform as
seen in (4). Hence, if FT −1 [.] is the inverse Fourier transform, one can successively write:

FT
[
f(t)e−σt

]
= F̂ (σ + 2iπν) (5)

f(t) = eσtFT −1
[
F̂ (σ + 2iπν)

]
(6)

= eσt
∫ +∞

−∞
F̂ (σ + 2iπν)e2iπνtdν (7)

One can therefore deduce from expression (7) that the inverse Laplace transform written L−1 [.]
can be expressed as follows:

L−1
[
F̂ (p)

]
= f(t) =

∫ +∞

−∞
F̂ (σ + 2iπν)e(σ+2iπν)tdν (8)

=
1

2iπ

∫ σ+i∞

σ−i∞
F̂ (p)eptdp (9)

From expressions (8) and (9), it can be said that the inverse Laplace transform can be calculated
by integrating in the complex plane along a vertical line whose abscissa equals σ > 0. One
assumes that there are no singularities on this line.

3 Laplace numerical inversion algorithms testing
3.1 Algorithms
Numerous algorithms can be found in the literature to perform Laplace transform numerical in-
version. According to reference [1], a main list of 14 inversion method families can be retained.
1If the function f(t) to be processed by unilateral Laplace transform is not equal to 0 for t < 0 one therefore calculates

the Laplace transform of the product f(t)u(t), with u(t) being the Heaviside step function:

∀t ∈ R, u(t) =

{
0 if t < 0
1 if t ≥ 0.

(2)
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In the present study, stained by our application field, one focuses on a subset of seven algorithms
or implementation alternatives.

In the context of reservoir engineering, models are often only known in the Laplace domain for p,
the Laplace argument, being a real number: p ∈ R. Under such a constraint, numerical inversion
algorithms that only work with complex Laplace argument (p ∈ C) cannot be directly considered.
Not being able to express reservoir models in the complex plane is the main constraint when
selecting a numerical inversion algorithm. Furthermore, one also wants algorithms to be stable,
accurate and fast.

The Gaver-Stehfest inversion method, described in [2] and [3], fulfills these criteria in most of the
practical cases that are encountered. Indeed, it is highly accurate and stable for most pressure
solutions. For this reason, it is one of the most widely used in this domain.

Unfortunately, as could be seen in the first exemple in section (1), Gaver-Stehfest inversion
method can also fail and give wrong results under certain circonstances. Indeed, one could see
that it suffers limitations for late-time rate data from boundary dominated models produced at
constant pressure: late-time exponential decline data cannot be obtained accurately from the
Gaver-Stehfest algorithm without some modification.

In this document, we come back to this algorithm, as a reference and a start point, to first see
how it can be tuned by using more terms, and second how accuracy can be increased by changing
the implementation method.

As mentioned before, when referring to the list of inversion method families given in [1], one can
see that about 2/3 of them, the ones requiring solutions in complex form, are simply not suitable
in the current application field. Therefore, in this list only series expansion algorithms could be
retained as serious candidates. Three polynomials families have been tested, namely Legendre,
Chebyshev and Laguerre. These algorithms respect our main constraint and are based on another
principle than the Gaver-Stehfest inversion method.

Since complex numerical inversion methods, i.e. with p ∈ C, cannot be totally ignored, we have
also tested two Fourier transform based algorithms. The first one is directly deduced from ex-
pression (4). It belongs to the Dubner-Abate algorithm family [4]. The second one, recently
pointed out and very successfully applied in [5], is called Den Iseger’s method [6]. Of course,
none of these two algorithms can directly be applied in the context of reservoir engineering when
solutions are not known in complex form. Nevertheless, if one considers that some kind of an-
alytic continuation can be applied on the reservoir models, it is also important to see how well
more general algorithms can perform.

A list of seven algorithms has been tested. They are referred to here as :

1. Gaver-Stehfest (p ∈ R) å see section (4.1.1)

2. Big number Gaver-Stehfest (p ∈ R) å see section (4.1.2)

3. Legendre polynomials (p ∈ R) å see section (4.1.3.1)

4. Chebyshev polynomials (p ∈ R) å see section (4.1.3.2)

5. Laguerre polynomials (p ∈ R) å see section (4.1.3.3)

6. Fourier (p ∈ C) å see section (4.2.1)

7. Den Iseger (p ∈ C) å see section (4.2.2)



Bruno Josso & Leif Larsen: Laplace transform numerical inversion - June 2012 - p 6/18

3.2 Testing function
Back to the exemple in section (1), both the asymptotic rate qD(tD) decline solution and its Laplace
transform L [qD(tD)] = q̂D(p) can be expressed as follows:

qD(tD) = Γe−µt L [.]
←−−−−−−−−→

q̂D(p) = Γ
1

p+ µ
(10)

with:

Γ =
1

1
2 ln( 4AD

eγCA
) + S

(11)

AD =
A

r2
w

(12)

µ =
2π

ADΓ
(13)

AD denotes a dimensionless area, CA is the Dietz shape factor and γ denotes Euler’s constant.

One will only focus here on this unique simple but illustrative asymptotic rate decline inversion
problem. Let F̂ (p) = Γ

(p+µ) , with p ∈ C, be a function to be inverted. Ones assumes that (µ, Γ) ∈ R∗2+ .
As can be found in a Laplace transform dictionary, and as reminded in equation (10), inversion
can be performed analytically leading to function f(t):

f(t) = L−1

[
Γ

(p+ µ)

]
= Γe−µt with: t ∈ R (14)

When applying the "final value theorem" to F̂ (p), one can demonstrate that, at late time t, the
function f(t) tends towards zero:

lim
p→0

pF̂ (p) = lim
p→0

Γp

(p+ µ)
= 0 (15)

Furthermore, if Γ > 0 the function f(t) always remains strictly positive. Therefore, one can write
this known results under another form :

lim
t→∞

Γe−µt = 0 (16)

∀t ∈ R, Γe−µt > 0 (17)

For a given couple (µ, Γ) ∈ R∗2+ , one can see in Figure 3 the function f(t) = Γe−µt, which is the
analytical result of the inversion of F̂ (p) = Γ

(p+µ) , as well as the result obtained by a usual numeri-
cal inversion algorithm. In Figure 3, the analytical solution is called f(t) and it appears in green,
whereas the numerical inversion result is called Fp_inv(t) and it appears in blue; both curves
nicely overlap.
When zooming on the curves at late time, when they get close to zero, one could see as before on
a similar exemple that the reconstructed function resulting from Gaver-Stehfest inversion method
becomes negative whereas it should follow an always positive exponential decline.

In the coming sections, one will test the different inversion algorithms on this exponential func-
tion f(t) given in (14) and perform such a close late time inspection. One will examine how some
Laplace numerical inversion methods converge towards the solution to see whether this inversion
artefact can be avoided.

Beyond the numerical inversion accuracy, one will particularly focus on the fact that for all t ∈ R,
the exponential function f(t) should remain strictly positive. The target here is to exhibit a
numerical inversion method that accurately inverts F̂ (p) = Γ

(p+µ) and always gives strictly positive
results.



Bruno Josso & Leif Larsen: Laplace transform numerical inversion - June 2012 - p 7/18

2 3 4 5 6
0

0 1

0.5

1

1.5

2
Fp_inv(t)

f(t)

0 1 2 3 4 5 6
-1e-014

-5e-015

0

5e-015

1e-014

1.5e-014
Error: f(t) - Fp_inv(t)

Test: Fp_inv(t) < 0

Den_Iseger inverse Laplace transform

Figure 3: Analytical solution f(t) = Γe−µt and numerical inversion result.

4 Inversion algorithms testing
In this section one presents the results obtained by each tested algorithm introduced in section
(3). Algorithm comparative tests were only performed on a single function f(t) given in (14) and
represented in Figure 3. For clarity sake, results are only presented here in terms of reconstruc-
tion errors and shown in a single figure for each algorithm configuration.

In each figure, the reconstruction error, which is equal to the known analytical result minus the
inverted Laplace function, appears in blue and is therefore tagged: Error: f(t) - Fp_inv(t). Since,
with the chosen test function f(t), one particularly focuses on the sign of the Laplace inverted
fonction, one can also see in green, superimposed on the error, the result of a "sign test" tagged:
Test Fp_inv(t) < 0. This often crenellated function allows one to easily localise instants for which
exponential reconstructed function becomes negative. The test function is positive when the in-
verted function is positive and negative otherwise. This test function is normalised in magnitude
to always keep the same proportion than the reconstruction error.

Algorithms can often be tweaked to increase inversion accuracy. This was not the aim of the
study. Therefore, the error magnitude that appears on the graphes should mainly be considered
as an indication and not as a method accuracy measurement.

Ideally, with the retained test function, a perfect inversion algorithm would yield a very accurate
inverted function with an always positive sign. In this case, the sign test function would be a
continuous horizontal line above the time axis. At least, a minor function preconditioning, should
allow one to reject at late time the instant when the sign indicator becomes negative. These are
the retained criteria to assess the different algorithms.

4.1 Algorithms with real Laplace argument: p ∈ R
4.1.1 Gaver-Stehfest algorithm

One of the most popular inversion algorithm, especially in reservoir engineering, where one needs
to have the Laplace argument p to be real (p ∈ R), is the Gaver-Stehfest method described in [2]
and [3]. This algorithm is fast and usually gives good results, especially for smooth functions.
Gaver-Stehfest algorithm is based on the following approximation:

∀t ∈ R∗+, f(t) ≈ ln(2)

t

N∑
n=1

KnF̂

(
n ln(2)

t

)
(18)

Parameter N , referred to as the "Stehfest number" should be even. The weighting coefficients
Kn can be calculated once and for all during a pre-processing, because they only depend on the
Stehfest number N .
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As could be seen in the introduction, though this algorithm usually performs well, it fails at late
time when inverting the test function F̂ (p) = Γ

(p+µ) . Indeed, as can be seen in Figure 4, the inverted
function oscillates around the analytical solution f(t) and it unfortunately becomes negative from
around t = 3.3. Indeed, at this instant the sign test indicator becomes negative. One reminds that
an appropriate error behaviour would have been to remain close to zero with a sign test indicator
always being strictly positive.
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Figure 4: Inversion of f(t) = e−µt by Stehfest N = 14 algorithm.

The precision of the Gaver-Stehfest inversion method depends on the Stehfest number N . Indeed,
one can see in equation (18) that the inversion is based on a summation of N weighted values.
Theoretically, the bigger N , the more precise the inversion (but the slower). Results shown in
Figure 4 were obtained by choosing N = 14. In practice since speed is also important the default
Stehfest number is often chosen around N = 8. The artefact in therefore more important.

At this point, one can assume that, to get closer to the analytical solution, one only needs to use
a bigger Stehfest number N . This actually is what is recommended in the literature. Therefore,
several inversion attempts are tested with bigger Stehfest number N:

• One can see in Figure 5 the result obtained with N = 16.
å The reconstruction error is smooth and, as expected, smaller than with N = 14.

• In Figure 6, one sets N = 18.
å The reconstruction error is smaller than with N = 16, but it becomes "noisy". This means
that the reconstruction error is now due to two different phenomena:

1. algorithm reconstruction error,
2. numerical approximation error.

• In Figure 7, one sets N = 20.
å The numerical approximation noise becomes predominant, reconstruction error is now
bigger than with N = 18!

• Finally, in Figure 8, one sets N = 22.
å One can see that the numerical approximation error grows dramatically and highly impacts
the reconstruction result.
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Figure 5: Inversion of f(t) = e−µt by Stehfest N = 16 algorithm.
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Figure 6: Inversion of f(t) = e−µt by Stehfest N = 18 algorithm.
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Figure 7: Inversion of f(t) = e−µt by Stehfest N = 20 algorithm.



Bruno Josso & Leif Larsen: Laplace transform numerical inversion - June 2012 - p 10/18

2 3 4 5 6
-0.5

0 1

0

0.5

1

1.5

2
Fp_inv(t)

f(t)

0 1 2 3 4 5 6
-0.003

-0.002

-0.001

0

0.001

0.002

0.003
Error: f(t) - Fp_inv(t)

Test: Fp_inv(t) < 0

Stehfest inverse Laplace transform

Figure 8: Inversion of f(t) = e−µt by Stehfest N = 22 algorithm.

In a standard implementation, the Stehfest number N should be adjustable. One can notice here
that it is reasonable to only allow a Stehfest number N ≤ 18. Indeed, if one tries to run Ste-
hfest algorithm with N bigger than 18 by using standard type formats (up to "long double" real
data type), one will suffer numerical approximation errors. Hence, when the Stehfest number N
becomes too big, the result is opposite to what was expected: reconstruction becomes less accu-
rate. To overcome this numerical approximation problem, one has to change the implementation
method by using: "arbitrary precision floating point arithmetic". With such an implementation
Gaver-Stehfest algorithm can then be pushed further. It can then be called: "big number Gaver-
Stehfest algorithm".

4.1.2 Big number Gaver-Stehfest algorithm

What we call the "big number Gaver-Stehfest algorithm" corresponds to the Gaver-Stehfest in-
version algorithm for which the Stehfest number N typically becomes greater than 18. One could
see in section (4.1.1) that though in standard implementation "long double" type is coded with
80 bits, numerical approximation errors occur starting from N = 18. Now, if one wants to go
further with running the algorithm with N > 18, one needs to use arbitrary precision floating point
arithmetic.

Even when changing the floating point arithmetic, Gaver-Stehfest algorithm is implemented ex-
actly the same way as before. One keeps using the approximation (18) to inverse the Laplace
transform. It should also be pointed out that in the reservoir engineering context, one also needs
to reimplement the reservoir models by also using the arbitrary precision floating point arithmetic.
Only changing the algorithm but keeping the reservoir models old implementation does not solve
the numerical approximation problem.

One can see in Figure 9, the big number Gaver-Stehfest algorithm reconstruction errors and sign
test for N = 22, 26, 30 and 40 (to be compared with graphes from Figure 4 to Figure 8).
One can see in Figure 9 that with such an implementation, reconstruction behaviour becomes as
expected: the bigger N the more accurate the reconstruction and the smaller the error. It can
virtually be made as small as desired. It can also be noticed that reconstruction error is smooth;
direct comparison can be made for N = 22. This means that, with such an arbitrary precision
floating point arithmetic implementation, results are not impacted by numerical precision any
more.

When checking sign test curves in green in Figure 9, one can see that even if reconstruction error
decreases with N , one can never avoid the inverted function to become negative. Depending on
N , the negative swing occurs at different instants. Unfortunately, this is not straightforwardly
controllable and therefore cannot easily be rejected towards very late time. Generalising this
result, one can say that for all retained Stehfest number N , the reconstructed function always
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Figure 9: Inversion error of f(t) = e−µt by Stehfest N = 22, 26, 30, and 40 algorithm.

oscillates around the true solution that dies towards zero and, in our example, occasionally be-
comes negative.

As a conclusion, big Stehfest number algorithm can contribute to minimise reconstruction error,
but it cannot be retained as an alternative for the current issue. Furthermore, as mentioned
before, big Stehfest number algorithm requires the use of an arbitrary precision floating point
arithmetic implementation. This is not costless since the inversion algorithm as well as all the
Laplace reservoir models need to be rewritten by using this high precision arithmetic to avoid
numerical approximation errors within the whole inversion process.

4.1.3 Polynomials series expansion algorithms

The principle of polynomials series expansion algorithms is to approximate the inverted function
by a weighing sum of particular polynomials. One has to calculate a given number K ∈ N of
weighting coefficients αk that depend on the function to be inverted. In the Laplace domain, let
F̂ (p) be the function to be inverted and f(t) be the result of this operation. The principle of the
series expansion method is to express f(t) as follows:

f(t) = w(t)

(
+∞∑
k=0

αkΦk(t)

)
≈ w(t)

(
K−1∑
k=0

αkΦk(t)

)
(19)

w(t) is a windowing function. Depending on the case, Φk(t) can be either a function of Legendre
polynomials, Chebyshev polynomials of second kind or Laguerre polynomials. These three alter-
natives are illustrated in the following sections. Weighting coefficients αk depend on the values
taken by F̂ (p) for a limited number of p values. The Laplace argument p is here considered as
being a real number.
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In practice, the series expansion given in (19) is performed on a limited number of terms K. In
theory, the bigger the integer K, the more accurate the inversion process yielding to f(t). In the
current implementation the values retained corresponded to the Stehfest number used in section
(4.1.1). On the other hand, when the number of coefficients K becomes too big, numerical
approximation problems occur. Again, an extra implementation effort should be made in order to
get a very accurate reconstruction linked to a big number of weighing coefficients. The situation
is strictly similar here as it was with Gaver-Stehfest algorithm.

4.1.3.1 Legendre polynomials
A description of this algorithm can be found in [1]. For Legendre polynomials, weighing coef-
ficients αk decrease slowly. Therefore, one has to choose K big enough to maximise inversion
accuracy. Comparatively, one recalls that for Gaver-Stehfest algorithm, a standard Stehfest num-
ber value is typically N = 8.

In Figure 10, one can see the reconstruction error obtained when inverting F̂ (p), the Laplace
transform of function f(t) = e−µt by using Legendre algorithm. It oscillates, especially at early
time, but error magnitude remains fairly stable. Unfortunately, the way the reconstructed function
converges towards the exact solution still causes problem. Indeed, one can see that at some
point, the exponential function becomes negative.

4.1.3.2 Chebyshev polynomials
A description of this algorithm can be found in [7]. In Figure 11, one can see the reconstruc-
tion error obtained when inverting F̂ (p), the Laplace transform of function f(t) = e−µt by using
Chebyshev algorithm. It oscillates and increases with time. Inversion accuracy is one of the
worst among the tested algorithms. One can also see that the reconstructed function eventually
becomes negative.

4.1.3.3 Laguerre polynomials
A description of this algorithm can be found in [7]. In Figure 12, one can see the reconstruction
error obtained when inverting F̂ (p), the Laplace transform of function f(t) = e−µt by using Laguerre
algorithm. It oscillates but decreases with time. Unfortunately the inverted function occasionally
becomes negative.

For further investigation, it should be mentioned that Laguerre polynomials algorithm can be
extended by considering a complex Laplace argument p ∈ C, by opposition to the real complex
argument p ∈ R scheme tested here. This latter strategy is the one retained by Weeks [8].

4.1.3.4 Conclusion on polynomials series expansion algorithms
As could be seen from section (4.1.3.1) to (4.1.3.3) none of polynomials series expansion
algorithms could give a satisfying inversion result. They do not perform better than the standard
Gaver-Stehfest reference method. Furthermore, inverted test function always become negative
at some points whereas it should always remain strictly positive.
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Figure 10: Inversion of f(t) = e−µt by Legendre (K = 20) algorithm.
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Figure 11: Inversion of f(t) = e−µt by Chebyshev (K = 20) algorithm.
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Figure 12: Inversion of f(t) = e−µt by Laguerre (K = 17) algorithm.
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4.2 Algorithms with complex Laplace argument: p ∈ C
None of the tested inversion algorithms based on real Laplace argument offers satisfying perfor-
mance. To go further, one now needs to test more general inversion algorithm for which functions
to be inverted can be defined in the complex plane.

Let us recall that reservoir models are, most of the time, only known in the Laplace domain for
p the Laplace argument being a real number. They have not even always got a closed-form ex-
pression. As a way of consequence, algorithms presented hereafter cannot be straightforwardly
applied in our context. One makes the assumption that some kind of analytic continuation could
be found and applied to the models prior to performing inversion. The existence of such a pro-
cessing is not discussed in this paper.

Two general Fourier based inversion methods are presented in this section. The first one is directly
deduced from expression (4). It belongs to the Dubner-Abate algorithm family [4]. The second
one, called Den Iseger’s method, is more recent since it appeared in [6].

4.2.1 Fourier algorithm

When considering the inversion relation (8), one straightforwardly can think that direct Fourier
based methods are very strong candidates to efficiently invert Laplace transform as stated in [1].
This is especially true when considering the very fast Fourier transform algorithms sample group
that is available nowadays. There is no need to know the Laplace function for all the values of
p ∈ C in the whole complex plane. Indeed, inversion is often based on a simple integration along
a line in the complex plane, which is distorted to avoid singularities.

Fourier based methods usually give fairly good inversion results. The inverted function gently
converges towards the analytical solution without oscillating much as can be seen in Figure 13.
Unfortunately, again, at some point, the inversion result becomes negative. Tweaking the algo-
rithm can allow one to delay this instant but only on a limited range. As a conclusion, even if
reservoir models were known in the complex plane, this algorithm would not be suitable for our
positive convergence issue.
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Figure 13: Inversion of f(t) = e−µt by Fourier algorithm.

4.2.2 Den Iseger algorithm

The Den Iseger algorithm, described in [6], has recently become very popular in petroleum en-
gineering research, as can be seen in [5]. This algorithm is indeed very accurate. It can also be
categorised as a Fourier based algorithm and can only be applied on functions F̂ (p) defined in the
complex plane with p ∈ C.
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One can see on our tested function in Figure 14 that inversion performance is impressive. Indeed,
the reconstruction error is close to machine precision. Furthermore, as can be seen on the sign
test curve, the inverted function nicely follows the analytical result and always remains positive.
This is precisely the behaviour that has been sought.
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Figure 14: Inversion of f(t) = e−µt by Den Iseger algorithm.

Undoubtedly, if Den Iseger algorithm did not require the Laplace argument p to be complex, it
would be a serious candidate to solve the issue that is discussed here.

5 Discussion
5.1 A word about algorithms running time
All along this study, we have not focused on algorithms running time. The main reason is that
they could not directly be compared. Indeed, no implementation optimisations have been sought,
but depending on the algorithm specifications, a variety of shortcuts could be found. Further-
more, several heterogeneous libraries have been used that contributed in either slowing down or
speeding up processing times.

The only element that can be compared is the number of times the function F̂ (p), defined in the
Laplace domain, has been scanned. This measurement is important since in industrial applications
this number of calls is at the heart of the processing. Before giving the figures, one first needs to
set a few parameters. The typical values given hereafter have be chosen in order to obtain the
best performance :

M = 256 : number of points on which inverted function f(t) is rebuilt

NK = 18 : number of terms N or K in the summation

Q = 2 : Laguerre algorithm number of degrees of freedom

NDFT = 8M : number of points used for the Discrete Fourier Transform

NL = 8 : Den Iseger algorithm quadrature rule number points

Often, the number of calls to the function F̂ (p), defined in the Laplace domain, is proportional to
the number of points on which the function is, directly or indirectly, rebuilt in the usual space, i.e.
M or NDFT . This is not the case for the polynomials series expansion algorithms.
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The number of calls to the function F̂ (p) for each algorithm is therefore:

Chebyshev: 18 = NK

Legendre: 18 = NK

Laguerre: 36 = NKQ

Fourier: 2048 = NDFT

Gaver-Stehfest: 4608 = NKM

Den Iseger: 16392 = NL(NDFT + 1)

5.2 Tests results
None of the tested algorithm has given fully suitable results. Algorithms based on a real Laplace
argument could not properly rebuild an always positive declining exponential function such as
e−µt. Every inversion attempt ended up at some point with negative values. Some kind of tweak-
ing can contribute in improving the inversion performance, but no any universal solution could be
found.

When going beyond the main constraint by assuming that the Laplace function to be inverted is
defined in the complex plane, one could only find one single algorithm that could invert the func-
tion with enough accuracy. The problem is now only shifted, since one has to find a way to build
some kind of analytic continuation to set the Laplace functions to be inverted in the complex plane.

Since one can not exhibit an algorithm that straightforwardly solve the issue, one can only give a
few hints to mainly correct a posteriori inversion results.

5.2.1 Pre-correction

The Laplace transform is a linear operator. To ensure a more accurate inversion one can add a
"correction function", say F̂corr(p), to the function F̂model(p) to be inverted to act on the result. A
strategy would be to add a "security" function whose analytical solution is known and that either
corrects or minimises known artefacts. In short, instead of calculating :

L−1
[
F̂model(p)

]
= fmodel(t) (20)

one would rather perform :

L−1
[
F̂model(p) + F̂corr(p)

]
= fmodel(t) + fcorr(t) (21)

What we call pre-correction can indeed contribute in improving the inversion result. Unfortunately,
it may also only delay the artefact or worse, potentially bring instability into a system that was
originally stable. Furthermore, there is no general rule to be followed to build up a suitable tailor
made correction function.

5.2.2 Post-correction

Another alternative would be to calculate the behaviour of the inverted function towards the
infinity and correspondingly perform a corrective post-processing. The Laplace transform offers
a powerful theorem that allows one to know the value of the inverted function f(t) towards the
infinity when knowing the function F̂ (p) in the Laplace domain for p = 0:

final value theorem ⇐⇒ f(+∞) = lim
p→0

pF̂ (p) (22)

After the final value is known, the inversion algorithm can detect the vicinity of this value and
adapt its mode to avoid late time inversion artefacts. One can either choose to stop the inversion,
or to remove wrong values, or even to extend the reconstructed function with another processing
type by asymptotic analysis or algorithm simplification.
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5.2.3 Analytic continuation & inversion in the complex plane

Den Iseger algorithm has proven to be the most successful and accurate inversion method among
the ones tested here. As already mentioned, it does not entirely satisfy our requirements in the
context of petroleum engineering since the function to be inverted needs to be known in the
complex plane, i.e. with p ∈ C.

A solution to fill the gap between the function F̂ (p), only known in the Laplace domain for a
real Laplace argument p ∈ R, and this particular inversion algorithm, would be to implement an
analytic continuation process. It should be applied on the function F̂ (p) and would yield a function
F̊ (p) defined in the complex plane for p ∈ C. This latter function F̊ (p) could eventually be inverted
by using a less constrained inversion algorithm such as Den Iseger. The full process would be as
follows:

F̂ (p), p ∈ R
↓

Analytic
continuation

↓
F̊ (p), p ∈ C

↓
Re
[
L−1 [ . ]

]
↓
f(t)

Now, it should be pointed out that analytic continuation is not a trivial task to perform. In short,
its principle is to extend definition domain of functions by mapping a real line onto a complex
plane. Among the difficulties, one can mention for instance the fact that certain functions with
a unique definition in the real space can have several definitions in the complex plane that do
not preserve all the properties of the original function, e.g. ln(t), t ∈ R ←→ ln(p), p ∈ C. Another
difficulty is to define strategies to avoid potential singularities.

Today, nothing warranties that new issues will not be brought to the numerical inversion initial
issue by adding this new processing. Furthermore, Den Iseger algorithm has proven to be a good
candidate in the current study after assessing performances on only a single test function. A new
study should be lead to generalise these first results.
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