

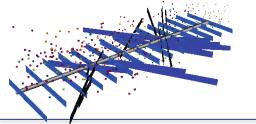
UR Add-on pack

KURC / Add-on pack

KURC – KAPPA Unconventional Resources Consortium

- KURC-1: 2012 2015
- KURC-2: 2016 ...
- KURC options are exclusive to members for 3 years since their release
- KURC members get access to any Add-on features

UR Add-on pack


- New developments + selected KURC-1/2 features post-exclusivity period
- Specific license privilege in Saphir ♥, Topaze ♥ and Rubis ♥
- Non-digressive, per stand-alone license
- Available since KW v5.20.01 (2018)

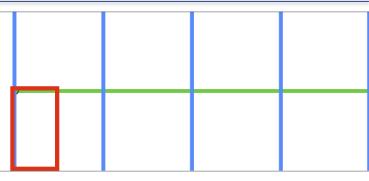
Add-on pack features

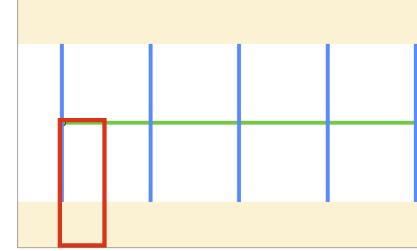
- Fast numerical models for SRV & Trilinear geometries
- DFN analytical model with conjugate fractures
- Were the standard strain of the standard s
- Were the second state of the second state o
- Load and display of microseismic data
- Simulation of Klinkenberg effect
- Fickian diffusion
 - Water flowback with static Initialization
 - Clarkson DDA Linear Flow plot
 - Flowing Material Balance plot
 - Statistical EUR

KURC-1/2 exclusive features

Features contractually exclusive to KURC members until mid-2020:

- ♥♥♥ Load from Fracturing Software
- KURC-1 ♥♥♥ Confined PVT
 - Wultiple KrPc
 - Stochastic DFN realizations
- KURC-2 ♥♥♥ Interference with DFN: Fast Marching Method
 - Stimulated zones around the fractures


Fast numerical models

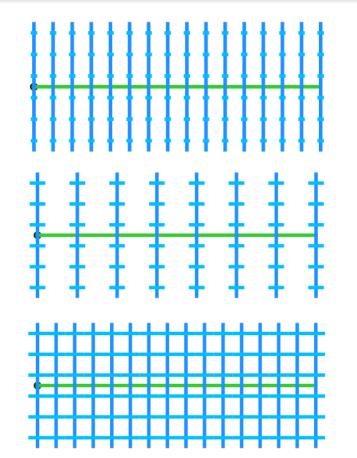

Very useful in the case of complex PVT and a simple but very long MFHW to tune the fracture properties prior to running the full numerical model

Well model

Finite radius Infinite conductivity fracture Finite conductivity fracture Limited entry Horizontal Fractured horizontal Fractured horizontal + SRVB Fractured horizontal + Trilinear Can be initiated from an analytical model via the Dashboard Stimulated Reservoir Volume bounded (SRVB)

Trilinear

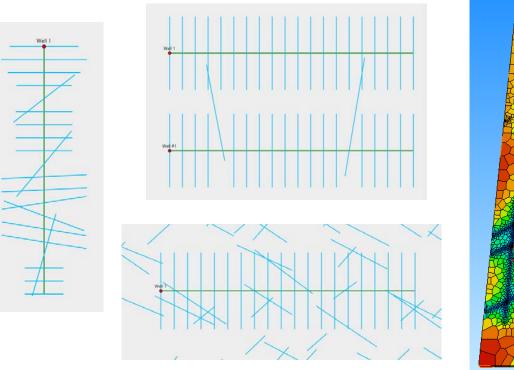
Efficient Proxies for Numerical Simulation of Unconventional Resources, Artus et al., 1896873-MS URTEC Conference Paper (2014)

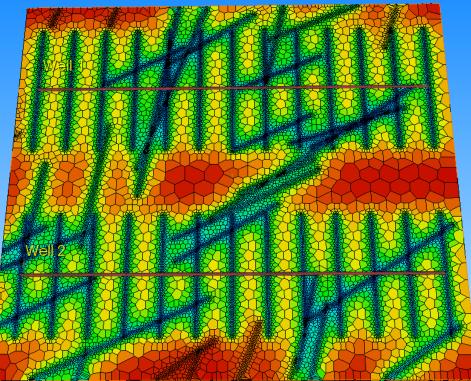


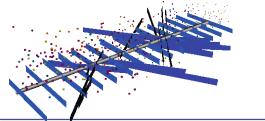

DFN analytical model

• Conjugate fractures: # fissures and geometry

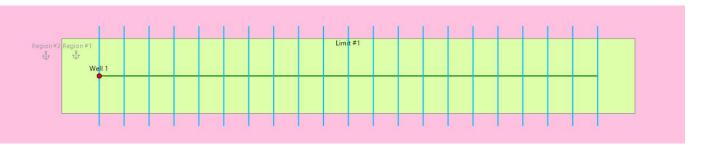
		? X
Parameters		
Show: All	Sho	w short names 🛛 🙀
Well & wellbore		^ ^
Skin	0.00000	
Modeling type	Conjugate fractures	•
Flow type	Simple	
Well length	SRVB	
Zw	Trilinear Complex	
Global fracture parameters	Conjugate fractures	N
Number of fractures	12	
Fracture model	Infinite conductivity	
Fracture half length	806.657	ft
Fracture height	30.0000	ft
Fracture width	0.00328084	ft
Global natural fissure parameters		^
Fissures connected		
Vertical half number of fissures	1	
Fissure half length	80.0000	ft
Fissure height	30.0000	ft
Fissure model	Infinite conductivity	U
History constraints		^
Include constraints		\checkmark
Max surface rate constraint	3.00000E+5	Mscf/D
Min surface rate constraint	0.00000	Mscf/D
an au ruce rate consulant		A

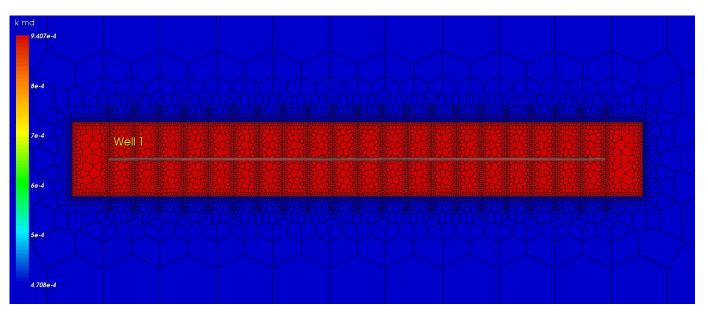


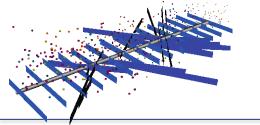



Numerical DFN

DFN and well fractures have distinct properties, including relative permeabilities and k(p).

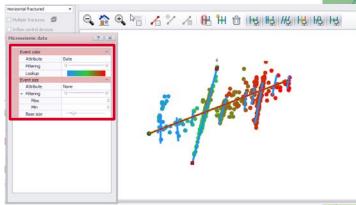


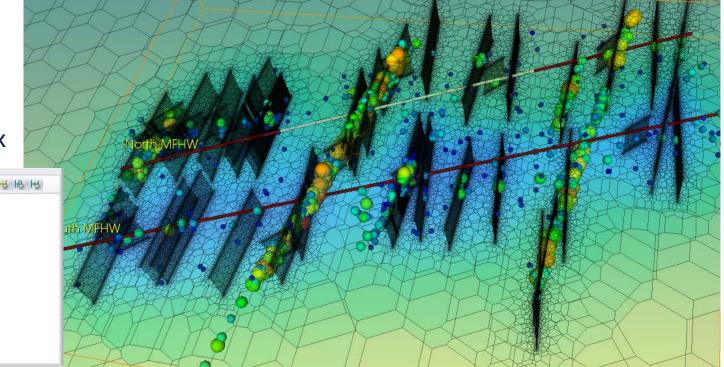

Composite zones

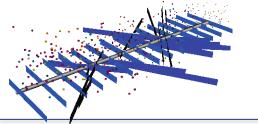


Composite limits are now allowed to cross fractures to simulate enhanced area close to the well

Region #1			^
Reservoir type	Homogeneous		•
М	1.00000		Ŧ
D	1.00000		Ŧ
Net-to-gross	1.00000		Ŧ
Region #2			^
Reservoir type	Homogeneous		-
М	Homogeneous	Ν	
D	Dual porosity pseudo steady state	ЬS	
Net-to-gross	1.00000		Ŧ

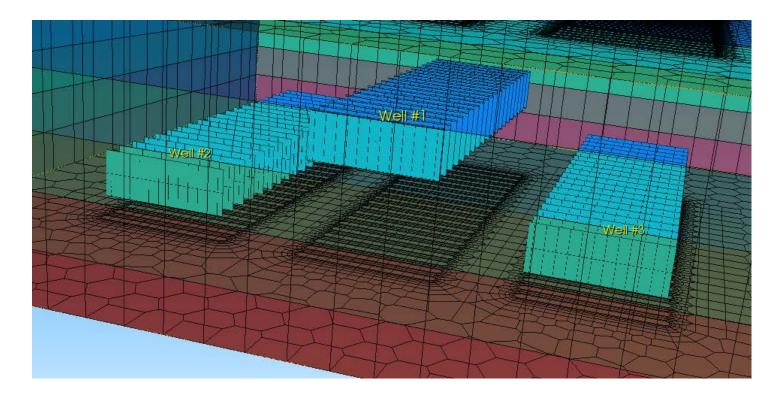


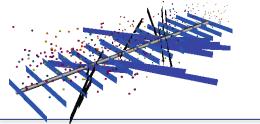

Microseismics



Load and display of microseismic events to constrain the MFHW configuration

Visualizing attributes: date, amplitude, stage index





Accelerated initialization

Large models with multiple MFHWs are initialized using specific faster procedures

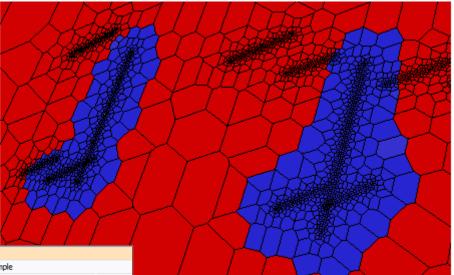
Klinkenberg effect

For gas observed permeability can be higher than the true/absolute permeability of the rock due to slippage

Available in the numerical model:

- PVT is set to dry gas
- Real PVT are used
- Reservoir type: homogeneous

Well 1		^
Zw	15.0000	ft
Perforation length	30.0000	ft
Well length	30.0000	ft
Rate dependent skin		
Skin	0.00000	
Wellbore model	None	
Bottomhole MD	6000.00	ft
Include constraints		
Reservoir		^
Initial pressure	7246.55	psia
Reservoir type	Homogeneous	
Transmissibility	1000.000	md.ft
Permeability	33.3333	md
Thickness	30.0000	ft
Porosity	0.1	
Klinkenberg		\checkmark
Klinkenberg b	200.000 psia	
Net-to-gross	1.00000	
kz/kr	1.00000	



Water flowback

To model the post fracture treatment water flowback:

- The user inputs the total injected water volume
- The injected volume is divided between the connected hydraulic and natural fractures (accounts for Kr end points)
- The local pressure increase is not modeled

Available in the numerical model:

- Multiphase PVT includes water
- Real PVT are used
- Well is set to MFHW

Well 1		
Modeling type	Simple	
Drain angle	0.00000	۰
Fracture model	Infinite conductivity	
Number of fractures	15	
Fracture half length	300.000	ft
Fracture height	30.0000	ft
Fracture mid-point height	15.0000	ft
Width	0.00328084	ft
Fracture angle	90.0000	۰
Zw	15.0000	ft
Well length	1000.00	ft
Stimulated zones around fractures		
Include injected water		\checkmark
Injected water	5000.00	MMSTB
Rate dependent skin		

Clarkson DDA Linear Flow plot

KAPPA

? / La = :

Linear flow analysis modified using pseudo-p from Dynamic Drainage Area concept

Time interv

Global results

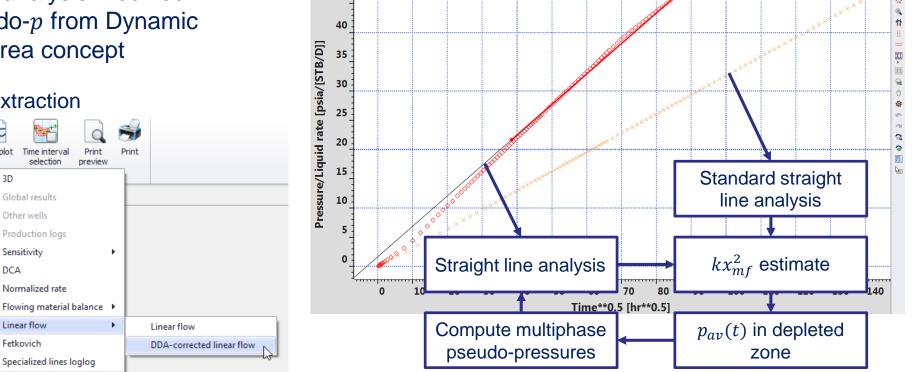
Production logs Sensitivity

Normalized rate

Linear flow

Fetkovich

Other wells


selection

Multiphase extraction

New plot

3D

DCA

Rate-transient analysis of liquid-rich tight/shale reservoirs using the dynamic drainage area concept: Examples from North American Reservoirs, Qanbari and Clarkson, Journal of Natural Gas Science and Engineering 35 (2016)

Clarkson linear flow plo

45

Multiphase/multiwell FMB Plot

 q_o

 Δp_{pw}

KAPPA

(?) 🥖 🗓 🗆 🗙

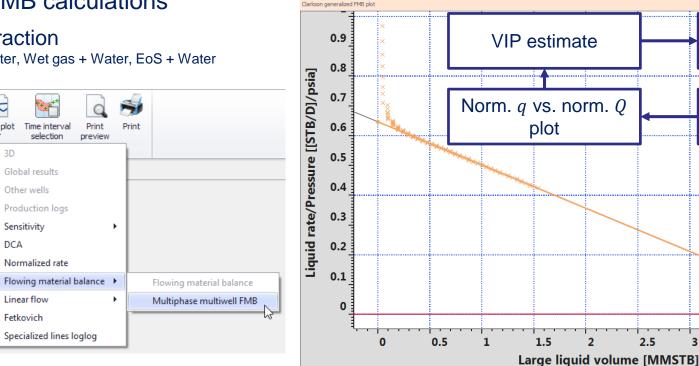
4.5

 $p_{av}(t)$

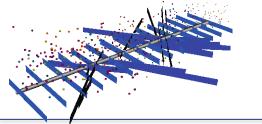
Compute multiphase

pseudo-pressures

3.5


 $\Delta p_{pav} N$

bN

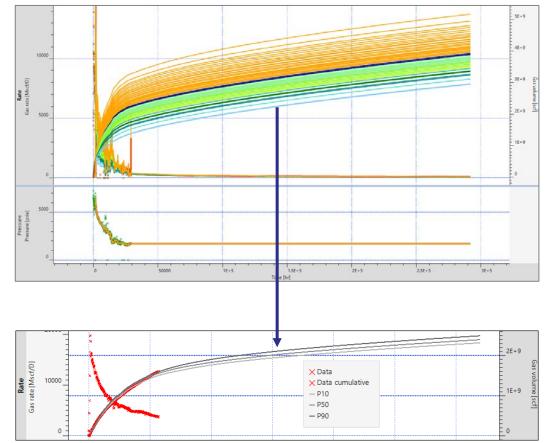

2.5

General Flowing Material Balance equation modified using pseudo-pand p_{av} from MB calculations

Multiphase extraction except: Dry gas + Water, Wet gas + Water, EoS + Water

Multi-Well, Multi-Phase flowing Material Balance Shahamat and Clarkson, SPE 185052 (2017)

Statistical EUR



- → Single forecast
- → Monte Carlo + Improve for uncertainty estimate
- Monte Carlo + Model Mining: replacing the CPU expensive nonlinear regression step by a data mining proxy

Model Mining is activated when:

- Model forecast in done
- There are multiple Monte Carlo sensitivity runs on the forecast
- The sensitivity runs 'bracket' historical *Q*_{cum}

Fickian diffusion

PVT includes gas & Real PVT are used

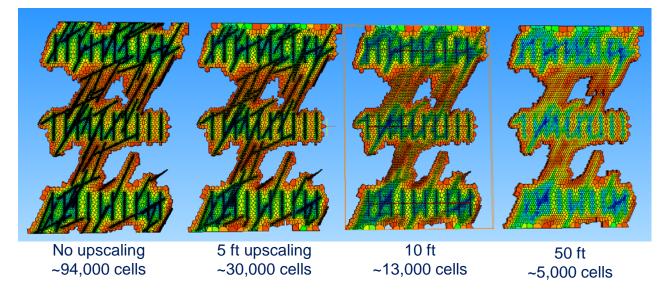
Available under 'Reservoir type'

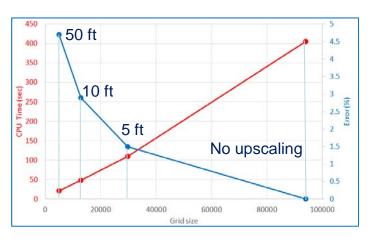
Generate numerical model					? X
Main options	,	Parameters			
🗌 Include other wells 🚳	Reset from diagnostic		Wellbore st	torage calcula	ator 🔡
Show average pressure	Reset from analytical	Show: All	Show short names	1	
Output	/	Perforation length	250.000	ft	* ^
✓ Output result fields	Automatic	Well length	250.000	ft	-
	Manual 🚳	Rate dependent skin			
Output well drainage results (Rubis only)) Manual 2005	Skin	0.00000		~
Uutput well drainage results (Rubis only)		Wellbore model	Constant		-
Advanced	`	 Wellbore storage 	9.50978E-4	bbl/psi	-
		Bottomhole MD	6000.00	ft	- 1
Time stepping	`	Include constraints			
Numerical settings	`	Reservoir			^
		Initial pressure	4228.00	psia	-
		Reservoir type	Fickian diffusion		-
		Transmissibility	Homogeneous		- 111
		Permeability	Dual porosity pseudo steady Fickian diffusion	/ state	
		Thickness	250,000 *0	n.	
		Porosity	0.2		~
		Net-to-gross	1.00000		~
		Diffusion time	10.0000	hr	-
		Diffusion ratio	1.00000		-
		kz/kr	1.00000		· · ·
Кеер	dialog open		Generate	e Car	ncel

or 'Reservoir properties'

Reservoir properties				?
Topology		Property set definition		
		Name: Default		
Uniform Layered Regional	Complex	Show: All	Show short names	
Click to edit, right-click to assign				
Default		Reservoir type	Fickian diffusion	
Layer #1 Default		Permeability	Homogeneous	
		Porosity	Dual porosity pseudo steady	/ state
		Net-to-gross	Fickian diffusion	
		Diffusion time	10.0000	hr
		Diffusion ratio	1.00000	
		kz/kr	1.00000	
		Lower layer leakage	1.00000	
		Rock compressibility	3.00000E-6	psi-1
Redefine KrPc in hydraulic fractures	X	KrPc: Default	- X	ŵ
Apply unconsolidation in hydraulic fractures	¢	Initial state: Default		Û
Use DFN		Pressure dependent properties: Default		Û
	\mathbb{R}	Desorption: Default	· 🙀	ŵ
	Geothermal gradient			
			ОК	Cancel

DFN Upscaling




DFN upscaling reduces the refinement of the grid (and gridblock count), correctly accounting for the matrix-to-fracture flow and interaction

- DFN added in Map X
- Upscaling parameters are available in Grid

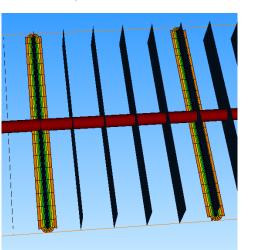
DFN upscaling	V	1
DFN resolution	4.00000	ft
DFN coarse resolution	50.0000	ft

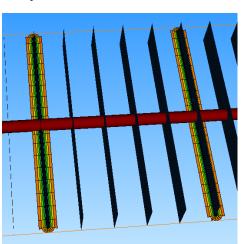
Min gridblock size changes from 'DFN resolution' to 'DFN coarse resolution'

The option allows opening some MFHW fractures at a later time

- Well is set as a MFHW
- Fractures are Finite conductivity
- (a) Regular refrac pattern:

Refrac		\checkmark			
Refrac elapsed time	18.0000	Month 🚽 🔻	→ T		
Number of fractures at t0	12			a	_
Refrac ratio	4			-	b
Infil					


(b) Irregular refrac pattern:


- Complex MFHW + indiv.properties
- Each fracture has its own refrac time T

Before refrac (time = 0):

 $N_f = a$

After refrac (time = T): $N_f = a + b (a - 1)$

(c) **Infill** option:

• All fractures start with matrix properties and switch to high conductivity at refrac elapsed time T

Loading properties of fracs

The option allows loading individual fracture properties for a complex MFHW from a file

- MFHW well modeling type should be set as 'Complex'
- 'Load' button is available in the well dialog
- Tick the options prior to loading a file:
 - Half-length
 - Fracture position (MD)
 - Angle to the wellbore
 - Individual properties (w, F_{CD} , ϕ)
 - Offset

Geometry and properties - Fracture #4				
Measured depth	7631.17	ft		
Fracture half length	1134.53	ft		
Fracture angle	67.8886	۰		
Fracture offset	192.914	ft		
Fracture height	400.000	ft		
Fracture conductivity	150.000	md.ft		
Fracture width	0.01	ft		
Fracture porosity	0.1			

Data Sour	ce		Se	parators	
				Space	
	×			Tab	
C:\Users\k	ostyleva\Desktop\F	ractures definition	-Nc 0	thers: ;	
Column	Column 1	Column 2	Column 3	Column 4	Column 5
Туре	Fracture name	MD Start	Xf	Angle	Offset 🔻
Unit		ft	ft	٥	UnDefined
1	Fracture name	MD	Xf	Angle	Fracture name Xf
2			[ft]	[degrees]	MD Start
3	Fracture #1	6000	462.151	67.1651	Angle Offset
4	Fracture #2	6361.64	550.908	67.5127	Width &
5	Fracture #3	7060.38	300	63.117	-6.92786
6	Fracture #4	7631.17	1134.53	67.8886	192.914
7	Fracture #5	8822.01	635.809	48.9681	250.219
8	Fracture #6	9350.3	300	53.0675	-42.3358
9	Fracture #7	9920.6	630.716	51.8192	-209.228
10	Fracture #8	11110.2	559.728	58.7486	-311.902
11	Fracture #9	11576.7	667.894	58.7188	-166.042
12	Fracture #10	12235	300	69,9204	-83.1065

Anomalous Diffusion

Anomalous Diffusion analytical model is made internal

W	/ell model [Horizontal fractured]	^
I	Horizontal fractured 🔹	
	Rate dependent skin	
R	eservoir model [Homogeneous]	^
	Homogeneous 🔹	
	Homogeneous Dual porosity pseudo steady state	
в	Dual porosity transient (slab)	~
_	Dual porosity transient (sphere)	
l	Anomalous Diffusion	
	Multi-zone fractional dimension	

Well & wellbore	
Wellbore storage	0.01
Skin	0.00000
Modeling type	Trilinear
Flow type	Simple
Well length	SRVB
	Trilinear
Zw	Complex
Number of fractures	Conjugate fractures

- Well: Simple MFHW or Trilinear
- Single layer models only
- Matrix: homogeneous / double porosity
- Can include changing WBS, rate-/time-dependent skin

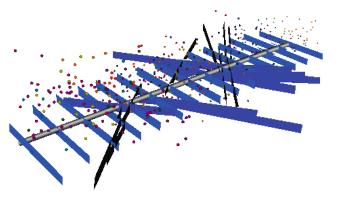
Initial pressure	5000.00	psia
Transmissibility	0.2	md.ft
Permeability	1.00000E-3	md
Thickness	200.000	ft
Porosity	0.1	
Primary diffusion exponent	0.7	
Secondary diffusion exponent	0.3	
Reservoir	Homogeneous	
kz/kr	1.00000	
Total compressibility	3.00000E-6	psi-1

Additional parameters: α_f and α_m (also for outer zone in Trilinear)

Fractured-Well Performance Under Anomalous Diffusion, Raghavan and Chen, SPE-165584 (2013). Also SPE-191407, SPE-191484.

Multi-zone fractional dimension

Multi-zone fractional dimension analytical model is made internal Selected in Well or Reservoir model dialog (the two are synchronized)

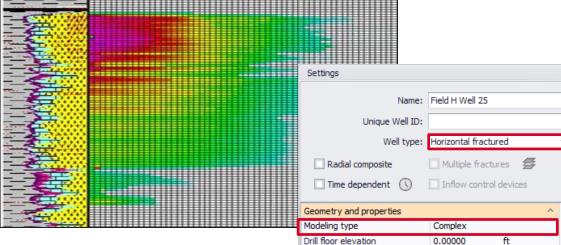

Well model [Multi-zone fractional dimension]	^
Multi-zone fractional dimension	
Rate dependent skin	
Reservoir model [Multi-zone fractional dimension]	^
Multi-zone fractional dimension	
□ horizontal anisotropy ☑ Use M,D Definition	
Boundary model [Infinite]	^
Infinite 🔻	
Show average pressure	

- Boundary: infinite / circular / linear
- Compatible with multilayer geometry
- Compatible with time-dependent skin
- Not available with time-dependent well mode

ΚΑΡΡΑ

New in v5.30

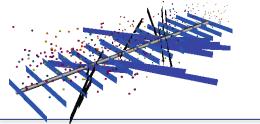
Analytical Pressure and Rate Transient Models for Analysis of Complex Fracture Networks in Tight Reservoirs, J.A. Acuña, URTeC paper SPE-2429710 (2016). Also SPE-2667752, SPE-2896802, SPE-2876208.



THANK YOU

_oad from fracturing software

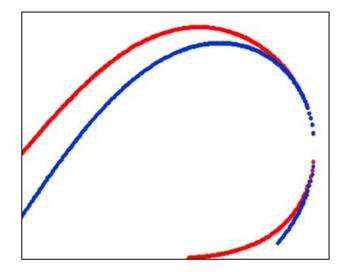
Fracture properties can be non-uniform along the fracture plane


	Unique Well ID:			
	Well type:	Horizontal fractu	red	•
	Radial composite	Multiple fractu	ires 🗲	
	Time dependent	Inflow control	devices	
	Geometry and properties		^	*
1	Modeling type	Complex		
1	Drill floor elevation	0.00000	ft	1
	Well radius	0.3	ft	
	Drain angle	0.00000	۰	
	Well length	2000.00	ft	
	Zw	15.0000	ft	U
	Import fracture data			
	Stimulated zones around fract		l W	
	Rate dependent skin]	
	Location		^	
	Input well head]	
	X	-1000.00	ft	
	v	0.00000	0	-

- Define a MFHW as 'Complex'
- Activate 'Import fracture data'
- Load properties from *.csv or *.xml:
 - Index, TVD and location at the well

KURC-1

KAPPA


- (X,Z): w_f , k_f , F_{CD} , φ , β
- Define fracture MD and angles

Confined PVT

The size of the pores ~ the size of hydrocarbon molecules ('confined') \rightarrow PVT is different from the phase behavior in a laboratory cell

			КАРРА РУТ	Rubis licer	se requ	ire
of		ccel Clipboard Petex IFP Edig		deling		?
	Quick flash	Import	Problem definition			
ed')	📥 Main 🛛 🔨	Equations of State	Common functionalities	V Rubis license required		
	Fluid system	Fluid type	Non uniform parameters	Load horizons		
se	C Equations of State (EOS)		Vertical anisotropy	Load from geomodeler		
	· · · ·	Oil / Gas	Horizontal anisotropy	Property sets		
	Linterfacial tensions V	O Dry gas Hydrocarbo		Improve on multiple wells		
		O Wet gas		Faults with throws		
		 Dead oil Saturated oil (bubble point fi 				
		Condensate (dew point fluid	Nonlinear diffusion			
		Define from lab report	Common functionalities	V Rubis license required		
			Use real PVT	Temperature modeling		
		Equation of State	Non Darcy flow	Gravity		
		Water V	Unconsolidation	Confined PVT		
			Allow aquifers	↓ ↓		
		[Reservoir			1
Fluid L	Definition Ty	vpe: EoS	Initial pressure	5000.00	psia	
	•	//	Variable type	Composition		-
Check	'Confined	P\/T'	Reservoir type	Homogeneous		
Oncor	Commicu		Transmissibility	0.0184281	md.ft	ancel
	adius' is st		Permeability	6.14271E-4	md	
Pore r	adius' is av		Thickness	30.0000	ft	
			Porosity	0.1		
Keser	voir Proper		Net-to-gross	1.00000		
	•		kz/kr	1.00000		
			Pore radius	1.00000E-8	m	

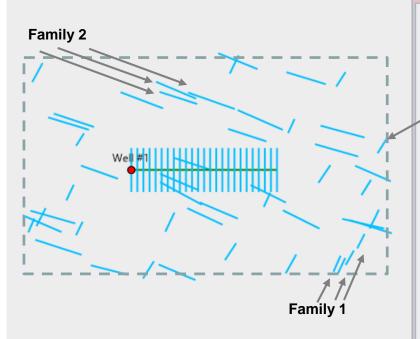
Multiple KrPc

Natural fissures

Matrix, well fractures and natural fissures can have independent sets of KrPc

Multiphase PVT is defined & real PVT are used

	Numerical Well fractures	Natural fissures		Load Generate Delete Export
PVT and Diffusion Matrix	Generate numerical model Main options Include other wels	DFN ? X	Properties	Redefine K/PC in natural fissures
PYT & diffusion Analytical modeling Numerical modeling PYT O Single phase @ Multiphase Reference fluid: Gain		Redefine KrPc in natural fissures Image: Apply unconsolidation in natural fissures	Reservoir properties Topology	Property set definition A Name: Default Show: A
✓ Define advanced PVT:	Advanced Advanced	Parameters General General Origin Generated Number of fissures 150 Total Xf 14440.8 ft	Layer #1 Default	Reservoir type Homogeneous Imageneous Permeability Constant * 33.3333 md Imageneous Porosity Constant * 0.1 Imageneous Imageneous Net-to-gross Constant * 1.00000 Imageneous Imageneous kz/kr 1.00000 Imageneous Imageneous Imageneous
Description:	Apply unconsolidation in hydraulic fractures Use DFN Time stepping V	Average Xf 96.4051 ft • Global fissures physical parameters	Well fractures	Rock compressibility 3.00000E-6 psi-1 + Matrix KrPc: Default - Initial state: Default - Initial state: Default
	Numerical settings V	OK Cancel	Use DFN	Pressure dependent properties: Default
	OK Cancel			OK Cancel


Stochastic DFN realizations **\>**

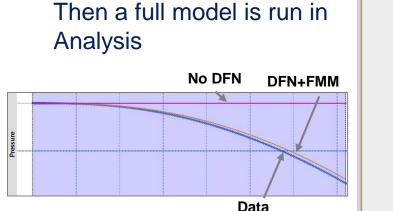
DFN

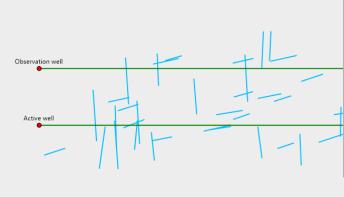
'Map' \rightarrow 'DFN' \rightarrow 'Generate'

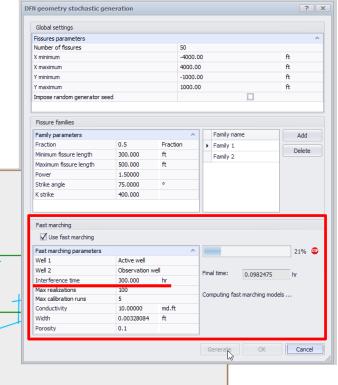
Location can be defined μ -seismic, if loaded

DF	N geometry stochastic ge	eneration						? X
	Global settings							
	Fissures parameters							^
	Number of fissures			50				
	Use microseismics events							
	X minimum			-2500.00	D			ft
	X maximum			2500.0	0			ft
1	Y minimum			-1500.00	D			ft
	Y maximum			1500.00				ft
1	Impose random generator se	ed						
	Fissure families							
	Family parameters			^		Family name	-	Add
	Fraction	0.5	Fracti	on	Þ	Family 1	- 1	Delete
	Minimum fissure length	200.000	ft			Family 2		Delete
	Maximum fissure length	300.000	ft					
		1.50000						
	Power	1.50000						
	Power Strike angle	30.0000	۰					

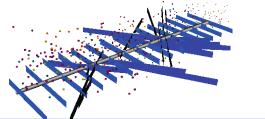
Interference with DFN: FMM


At least 2 wells must exist in the map



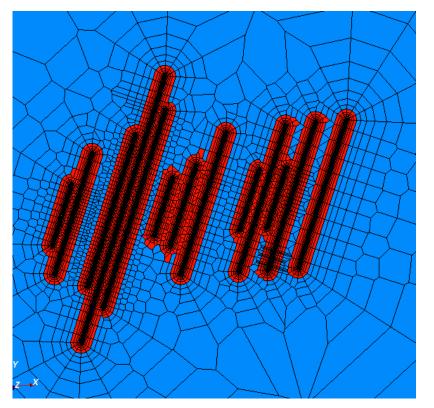

'Map' \rightarrow 'DFN' \rightarrow 'Generate'

Interference time is an input to constrain the DFN

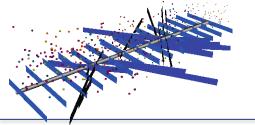

A number of realizations are run using Fast Marching (flow in fractures only) to pick one closest to the interference time

KURC-2

Stimulated zones


Stimulated zones around fractures of a MFHW

- Available for both Simple and Complex well types
- Defined by radius of the zone, k and φ multipliers


Parameters		
Show: All	Show short	names
Well 1		
Modeling type	Simple	
Drain angle	0.00000	۰
Fracture model	Infinite conductivity	
Number of fractures	13	
Fracture half length	360.000	ft
Fracture height	30.0000	ft
Fracture mid-point height	15.0000	ft
Width	0.00328084	ft
Fracture angle	90.0000	۰
Zw	15.0000	ft
Well length	2000.00	ft
Stimulated zones around fractures		
Stimulation radius	50.0000	ft
Permeability multiplier	4.00000	
Porosity multiplier	1.00000	
Rate dependent skin		
Wellbore model	None	
Bottomhole MD	6000.00	ft

These parameters can be regressed upon in 'Improve'

In	prove							
ſ	Parameters	Targets						
	Constant parameters							
	-	Well 1						
		Theta						
		Ν						
		Xf						
		Hf						
		Zf						
		Width						
		Beta						
		Zw						
	0	Lw						
	•	Stimulation radius						
	•	k multiplier						
	•	phi multiplier						

Compatible with numerical SRVB/Trilinear models

KURC-2 future developments

- ♥♥♥ MFHW with deviated drain trajectory
- Coupling with geomechanics
- $\mathbf{\nabla \mathbf{\nabla \nabla \nabla}}$ Stimulated zones around the fractures with k(p) and $\varphi(p)$