



# **UR Add-on pack**



KURC / Add-on pack



#### KURC – KAPPA Unconventional Resources Consortium:

- KURC-1: 2012 2015
- KURC-2: 2016 2020

#### UR Add-on pack:

- All former KURC-1/2 features + new developments
- Specific license privilege in Saphir ♥, Topaze ♥ and Rubis ♥
- Non-digressive, per stand-alone license pricing
- Available since KW v5.20.01 (2018)

Latest update KW v5.40.05 (Dec 2021)



# Add-on pack: Analytical



- DFN analytical model with conjugate fractures
- Anomalous diffusion model
- Multi-zone fractional model
  - Dynamic Drainage Area corrected Linear Flow plot
  - Flowing Material Balance plot
  - Statistical EUR

# Add-on pack: Numerical



- Fast numerical models for SRVB & Trilinear geometries
  - Water flowback with static Initialization
- Womerical DFN model
- Vertical model with composite zones
- Load and display of microseismic data
- Simulation of Klinkenberg effect
- Fickian diffusion
- Performed a MFHW
- ♥♥♥ DFN Upscaling
- Loading properties of fracs



# Add-on pack: new features



- v5.30.03: ♥♥♥ Load from Fracturing Software
  - Confined PVT
  - ♥♥♥ Multiple KrPc
  - Stochastic DFN realizations
  - ♥♥♥ Interference with DFN: Fast Marching Method
  - Stimulated zones around the fractures
  - Numerical 'butterfly' model
- v5.40.01: ♥♥♥ CSG Well Intake
- v5.40.02: ♥♥♥ Fractal MFHW
  - Fractional Dimension Workflow
  - Cumulative Volume Loglog Plot



### **DFN** analytical model



#### • Conjugate fractures: # fissures and geometry

|                                   |                       | ? X       | Complex horizontal fractured well | 2 |
|-----------------------------------|-----------------------|-----------|-----------------------------------|---|
| Parameters                        |                       |           |                                   |   |
|                                   |                       |           |                                   |   |
| Show: All                         | Show shore            | t names 🔌 |                                   |   |
| Well & wellbore                   |                       | <u>^</u>  |                                   |   |
| Skin                              | 0.00000               |           |                                   |   |
| Modeling type                     | Conjugate fractures   | •         |                                   |   |
| Flow type                         | Simple                |           |                                   |   |
| Well length                       | SRVB                  |           |                                   |   |
| Zw                                | Complex               |           |                                   |   |
| Global fracture parameters        | Conjugate fractures   | N         |                                   |   |
| Number of fractures               | 12                    | 10        |                                   |   |
| Fracture model                    | Infinite conductivity |           |                                   |   |
| Fracture half length              | 806.657               | ft        |                                   |   |
| Fracture height                   | 30.0000               | ft        |                                   |   |
| Fracture width                    | 0.00328084            | ft        |                                   |   |
| Global natural fissure parameters |                       | ~         |                                   |   |
| Fissures connected                |                       |           |                                   |   |
| Vertical half number of fissures  | 1                     |           |                                   |   |
| Fissure half length               | 80.0000               | ft        |                                   |   |
| Fissure height                    | 30.0000               | ft        |                                   |   |
| Fissure model                     | Infinite conductivity | 0         |                                   |   |
| History constraints               |                       | ^         |                                   |   |
| Include constraints               | $\checkmark$          |           |                                   |   |
| Max surface rate constraint       | 3.00000E+5            | Mscf/D    |                                   |   |
| Min surface rate constraint       | 0.00000               | Mscf/D    |                                   |   |
| Reservoir & boundary              |                       | A T       |                                   |   |
|                                   | Genera                | te Cancel |                                   |   |



### Anomalous Diffusion



#### Available under 'Specific' analytical models

| Generate analytical model                                   |        |                              |                       | (     | ? )   |
|-------------------------------------------------------------|--------|------------------------------|-----------------------|-------|-------|
| Standard models Specific models                             |        |                              |                       |       |       |
| Main options:                                               | ~      | Parameters                   |                       |       |       |
| Impose pi                                                   |        | Show: All                    | Show short names      |       |       |
| Wellbore model [Constant]                                   | $\sim$ | Modeling type                | Trilinear             |       | -     |
| Proxy model [Fractured horizontal with anomalous diffusion] | ^      | Flow type                    | Simple が<br>Trilinear |       |       |
| Fractured horizontal with anomalous diffusion 💌             |        | Zw                           | 100.000               | ft    | •     |
|                                                             |        | Number of fractures          | 312                   |       |       |
|                                                             |        | Fracture half length         | 47.8253               | ft    | •     |
| Boundary model [Infinite]                                   | ~      | Fracture model               | Finite conductivity   |       | •     |
|                                                             |        | Fracture conductivity        | 500.000               | md.ft | •     |
| Infinite •                                                  |        | FcD                          | 1.03479E+6            |       | Ŧ     |
| Show average pressure                                       |        | Fracture skin                | 0.00000               |       | ~     |
|                                                             |        | Reservoir & boundary         |                       |       | ~     |
| Time stepping                                               | $\vee$ | Initial pressure             | 3858.75               | psia  | •     |
|                                                             |        | Transmissibility             | 0.00202066            | md.ft | •     |
|                                                             |        | Permeability                 | 1.01033E-5            | md    | •     |
|                                                             |        | Thickness                    | 200.000               | ft    | •     |
|                                                             |        | Porosity                     | 0.096                 |       | Ŧ     |
|                                                             |        | Outer permeability           | 1.61583E-5            | md    | •     |
|                                                             |        | Outer porosity               | 0.096                 |       | -     |
|                                                             |        | Super diffusion              |                       |       |       |
|                                                             |        | Primary diffusion exponent   | 0.995557              |       | Ŧ     |
|                                                             |        | Secondary diffusion exponent | 0.76                  |       | · · · |
| C Keep dialog open                                          |        |                              | Generat               | e Ca  | incel |

- Well+boundary:
  - Simple MFHW + infinite/rectangle
  - Trilinear + infinite/closed reservoir
- Matrix: single/double porosity
- Single layer models only
- Can include changing WBS, rate-/time-dependent skin

Additional parameters:  $\alpha_f$  and  $\alpha_m$ (also for outer zone in Trilinear)

Fractured-Well Performance Under Anomalous Diffusion, Raghavan and Chen, SPE-165584 (2013). Also SPE-191407, SPE-191484.

# Multi-zone fractional dimension

#### Available under 'Specific' analytical models

| Generate analytical model                     |        |                             |                            | ?       | x |
|-----------------------------------------------|--------|-----------------------------|----------------------------|---------|---|
| Standard models Specific models               |        |                             |                            |         |   |
| Main options:                                 | ~      | Parameters                  |                            |         |   |
| Impose pi                                     |        | Show: All                   | Show short names 🙀         |         |   |
| Wellbore model [Constant]                     | $\sim$ | Well & wellbore             |                            |         | ^ |
|                                               |        | Wellbore storage            | 0.00167181                 | bbl/psi | • |
| Proxy model [Multi-zone fractional dimension] | ^      | Skin                        | 0.00000                    |         | ~ |
| Multi-zone fractional dimension 🔹             |        | Total fracture half-length  | 4500.00                    | ft      | • |
|                                               |        | Reservoir & boundary        |                            |         | ^ |
|                                               |        | Initial pressure            | 3858.75                    | psia    | • |
| Boundary model [Infinite]                     | ~      | Transmissibility            | 0.00202066                 | md.ft   | • |
|                                               |        | Permeability                | 1.01033E-5                 | md      | - |
| Infinite 🔻                                    |        | Thickness                   | 200.000                    | ft      | • |
| Show average pressure                         |        | Porosity                    | 0.096                      |         | ~ |
|                                               |        | Number of zones             | 2                          |         |   |
| Time stepping                                 | $\vee$ | Minimal distance            | 1.00000E-6                 | ft      | • |
|                                               |        | Total compressibility       | 1.96297E-5                 | psi-1   | • |
|                                               |        | Zone#1                      |                            |         | ^ |
|                                               |        | Fractional dimension        | 0.3                        |         | ~ |
|                                               |        | Outer radius                | 300.000                    | ft      | • |
|                                               |        | Interface area control type | Consistent volume (behind) |         | - |
|                                               |        | Zone#2                      |                            |         | ~ |
|                                               |        | Fractional dimension        | 0.7                        |         | ~ |
|                                               |        |                             |                            |         |   |
| 🗌 Keep dialog open                            |        |                             | Generate                   | Cancel  | I |

Boundary: infinite / circular / linear

ΚΑΡΡΑ

- Compatible with multilayer geometry
- Compatible with timedependent skin
- Not available with timedependent well mode

Also SPE-2667752, SPE-2896802, SPE-2876208.

Analytical Pressure and Rate Transient Models for Analysis of Complex Fracture Networks in Tight Reservoirs, J.A. Acuña, SPE-2429710 (2016).

# **Clarkson DDA Linear Flow plot**

**KAPPA** 

? / L =

Linear flow analysis modified using pseudo-p from Dynamic Drainage Area concept

Time interv

Global results

Production logs Sensitivity

Normalized rate

Linear flow

Fetkovich

Other wells

selection

#### Multiphase extraction

New plot

3D

DCA



Rate-transient analysis of liquid-rich tight/shale reservoirs using the dynamic drainage area concept: Examples from North American Reservoirs, Qanbari and Clarkson, Journal of Natural Gas Science and Engineering 35 (2016)

Clarkson linear flow plo

# Multiphase/multiwell FMB Plot 💙

 $q_o$ 

 $\Delta p_{pw}$ 

**KAPPA** 

4.5

 $\Delta p_{pav} N$ 

bN

**General Flowing Material Balance** equation modified using pseudo-pand  $p_{av}$  from MB calculations

Multiphase extraction except: Dry gas + Water, Wet gas + Water, EoS + Water

3D

DCA

![](_page_9_Figure_3.jpeg)

Multi-Well, Multi-Phase flowing Material Balance Shahamat and Clarkson, SPE 185052 (2017)

![](_page_10_Picture_0.jpeg)

### **Statistical EUR**

![](_page_10_Picture_2.jpeg)

- → Single forecast
- → Monte Carlo + Improve for uncertainty estimate
- Monte Carlo + Model Mining: replacing the CPU expensive nonlinear regression step by a data mining proxy

![](_page_10_Picture_6.jpeg)

#### Model Mining is activated when:

- Model forecast in done
- There are multiple Monte Carlo sensitivity runs on the forecast
- The sensitivity runs 'bracket' historical *Q*<sub>cum</sub>

![](_page_10_Figure_11.jpeg)

![](_page_11_Picture_0.jpeg)

### Water flowback

![](_page_11_Picture_2.jpeg)

To model the post fracture treatment water flowback:

- The user inputs the total injected water volume
- The injected volume is divided between the connected hydraulic and natural fractures (accounts for Kr end points)
- The local pressure increase is not modeled

![](_page_11_Figure_7.jpeg)

Available in the numerical model:

- Multiphase PVT includes water
- Real PVT are used
- Well is set to MFHW

| Well 1                            |                       |              |
|-----------------------------------|-----------------------|--------------|
| Modeling type                     | Simple                |              |
| Drain angle                       | 0.00000               | ۰            |
| Fracture model                    | Infinite conductivity |              |
| Number of fractures               | 15                    |              |
| Fracture half length              | 300.000               | ft           |
| Fracture height                   | 30.0000               | ft           |
| Fracture mid-point height         | 15.0000               | ft           |
| Width                             | 0.00328084            | ft           |
| Fracture angle                    | 90.0000               | ۰            |
| Zw                                | 15.0000               | ft           |
| Well length                       | 1000.00               | ft           |
| Stimulated zones around fractures | [                     |              |
| Include injected water            |                       | $\checkmark$ |
| Injected water                    | 5000.00               | MMSTB        |
| Rate dependent skin               |                       |              |

![](_page_12_Picture_0.jpeg)

### Klinkenberg effect

![](_page_12_Picture_2.jpeg)

For gas observed permeability can be higher than the true/absolute permeability of the rock due to slippage

#### Available in the numerical model:

- PVT is set to dry gas
- Real PVT are used
- Reservoir type: homogeneous

| Well 1              |             | ^            |
|---------------------|-------------|--------------|
| Zw                  | 15.0000     | ft           |
| Perforation length  | 30.0000     | ft           |
| Well length         | 30.0000     | ft           |
| Rate dependent skin |             |              |
| Skin                | 0.00000     |              |
| Wellbore model      | None        |              |
| Bottomhole MD       | 6000.00     | ft           |
| Include constraints |             |              |
| Reservoir           |             | ^            |
| Initial pressure    | 7246.55     | psia         |
| Reservoir type      | Homogeneous |              |
| Transmissibility    | 1000.000    | md.ft        |
| Permeability        | 33.3333     | md           |
| Thickness           | 30.0000     | ft           |
| Porosity            | 0.1         |              |
| Klinkenberg         |             | $\checkmark$ |
| Klinkenberg b       | 200.000     | psia         |
| Net-to-gross        | 1.00000     |              |
| kz/kr               | 1.00000     |              |
|                     |             |              |

![](_page_13_Picture_0.jpeg)

# **Confined PVT**

![](_page_13_Picture_2.jpeg)

The size of the pores ~ the size of hydrocarbon molecules ('confined')  $\rightarrow$  PVT is different from the phase behavior in a laboratory cell

![](_page_13_Figure_4.jpeg)

|         |                            |                               | ΚΑΡΡΑ ΡΥΤ                  |                             | Rubis license             | required    |
|---------|----------------------------|-------------------------------|----------------------------|-----------------------------|---------------------------|-------------|
|         |                            | 1 🗋 🔥 健                       | C PVT & diffusion          |                             |                           | × ?         |
| Dt I    | Flash KAPPA ASCII Ex       | cel Clipboard Petex IFP Ec    | PVT & diffusion Analytical | modeling Numerical modeling |                           |             |
|         | Quick flash                | Import                        | Problem definition         |                             |                           |             |
| d')     | 📥 Main 🛛 🔨                 | Equations of State            | Common functionalities     |                             | YRubis license required   |             |
| .,      | Fluid system               | Fluid type                    | Non uniform parar          | neters                      | Load horizons             |             |
| e       | Equations of State (EQS) × | -                             | Vertical anisotropy        | /                           | Load from geomodeler      |             |
| •       |                            | Oil / Gas                     | Horizontal anisotro        | рру                         | Property sets             |             |
|         |                            | Wet gas                       |                            |                             | Improve on multiple wells |             |
|         |                            | O Dead oil                    |                            |                             | Faults with throws        |             |
|         |                            | O Saturated oil (bubble point | flu                        |                             |                           |             |
|         |                            | O Condensate (dew point flu   | id) Nonlinear diffusion    |                             |                           |             |
|         |                            | Define from lab report        | Common functionalities     |                             | V Rubis license required  |             |
|         |                            |                               | Use real PVT               |                             | Temperature modeling      |             |
|         |                            | Equation of State             | Non Darcy flow             |                             | Gravity                   |             |
|         |                            | Water 😽                       | Unconsolidation            |                             | Contined PVT              |             |
|         |                            |                               | Allow aquiters             |                             |                           |             |
| Eluid D | ofinition T                | no EoS                        | Reservoir                  | 500                         | 0.00                      | ngia        |
|         |                            | /pe. L00                      | Variable type              | Cor                         | mosition                  | psia        |
| Chook   | Confined                   | ידע רם                        | Reservoir type             | Hor                         | nogeneous                 |             |
| Check   | Commed                     |                               | Transmissibility           | 0.0                         | 184281                    | md.ft ancel |
| (       | 10 A A                     | and the second                | Permeability               | 6.1                         | .4271E-4                  | md          |
| Pore ra | adius' is av               | allable in                    | Thickness                  | 30.                         | 0000                      | ft          |
|         |                            |                               | Porosity                   | 0.1                         |                           |             |
| Keserv  | or Propert                 | les                           | Net-to-gross               | 1.0                         | 0000                      |             |
|         | •                          |                               | kz/kr                      | 1.0                         | 0000                      |             |
|         |                            |                               | Pore radius                | 1.0                         | 00000E-8                  | m           |

![](_page_14_Picture_0.jpeg)

#### Fickian diffusion

![](_page_14_Picture_2.jpeg)

#### PVT includes gas & Real PVT are used

#### Available under 'Reservoir type'

| Generate numerical model                   |                       |                     |                             |               | ? X        |
|--------------------------------------------|-----------------------|---------------------|-----------------------------|---------------|------------|
| Main options                               | ~                     | Parameters          |                             |               |            |
| 🗌 Indude other wells 🛞                     | Reset from diagnostic |                     | Wellbore sto                | orage calcula | tor 🔡      |
| Show average pressure                      | Reset from analytical | Show: All           | Show short names            |               |            |
| Output                                     | ^                     | Perforation length  | 250.000                     | ft            | <b>v</b> A |
| Output regult fields                       | A                     | Well length         | 250.000                     | ft            | -          |
|                                            | Automatic             | Rate dependent skin |                             |               |            |
| Output wall drain and road to (Pubia anh.) | ) Manual 2005         | Skin                | 0.00000                     |               |            |
| Uutput weil drainage results (Rubis only)  |                       | Wellbore model      | Constant                    |               | -          |
| Advanced                                   | ~                     | Wellbore storage    | 9.50978E-4                  | bbl/psi       | -          |
|                                            |                       | Bottomhole MD       | 6000.00                     | ft            | -          |
| Time stepping                              | ~                     | Include constraints |                             |               |            |
| Numerical settings                         | ~                     | Reservoir           |                             |               | ^          |
|                                            |                       | Initial pressure    | 4228.00                     | psia          | -          |
|                                            |                       | Reservoir type      | Fickian diffusion           |               | -          |
|                                            |                       | Transmissibility    | Homogeneous                 |               | - 111      |
|                                            |                       | Permeability        | Dual porosity pseudo steady | state         | -111       |
|                                            |                       | Thickness           | 230.000 00                  | 14            |            |
|                                            |                       | Porosity            | 0.2                         |               | -          |
|                                            |                       | Net-to-gross        | 1.00000                     |               | -          |
|                                            |                       | Diffusion time      | 10.0000                     | hr            | -          |
|                                            |                       | Diffusion ratio     | 1.00000                     |               | -          |
|                                            |                       | kz/kr               | 1.00000                     |               | · · ·      |
| Кеер                                       | dialog open           |                     | Generate                    | Can           | cel        |

#### or 'Reservoir properties'

| Reservoir properties                         |                        |                                        |                            | ?        |
|----------------------------------------------|------------------------|----------------------------------------|----------------------------|----------|
| Topology                                     |                        | Property set definition                |                            |          |
|                                              |                        | Name: Default                          |                            |          |
| Uniform Layered Regional                     | Complex                | Show: All                              | Show short names           | <b>7</b> |
| Click to edit, right-click to assign         |                        |                                        |                            |          |
| Default                                      |                        | Reservoir type                         | Fickian diffusion          |          |
| Layer #1 Default                             |                        | Permeability                           | Homogeneous                |          |
|                                              |                        | Porosity                               | Dual porosity pseudo stead | dv state |
|                                              |                        | Net-to-gross                           | Fickian diffusion          |          |
|                                              |                        | Diffusion time                         | 10.0000                    | hr       |
|                                              |                        | Diffusion ratio                        | 1.00000                    |          |
|                                              |                        | kz/kr                                  | 1.00000                    |          |
|                                              |                        | Lower layer leakage                    | 1.00000                    |          |
|                                              |                        | Rock compressibility                   | 3.00000E-6                 | psi-1    |
| Redefine KrPc in hydraulic fractures         | X                      | KrPc: Default                          | - X                        | Û        |
| Apply unconsolidation in hydraulic fractures | <b>İ</b>               | Initial state: Default                 |                            | Û        |
| Use DFN                                      |                        | Pressure dependent properties: Default |                            | Û        |
|                                              | $\mathbb{I}$           | Desorption: Default                    |                            | Û        |
|                                              | Geothermal<br>gradient |                                        |                            |          |
|                                              |                        |                                        | OK                         | Cancel   |

![](_page_15_Picture_0.jpeg)

#### **Numerical DFN**

![](_page_15_Picture_2.jpeg)

DFN and well fractures have distinct properties, including relative permeabilities and k(p).

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

### Numerical Proxy models

![](_page_16_Picture_2.jpeg)

Useful in the case of complex PVT and a simple very long MFHW to tune the fracture properties prior to running the full numerical model

| Generate numerical model                |     |                                        |                       | 7     | ) <b>x</b> |
|-----------------------------------------|-----|----------------------------------------|-----------------------|-------|------------|
| Full (3D) Proxy (1D)                    |     |                                        |                       |       |            |
| Main options                            | ^   | Parameters                             |                       |       |            |
| Generate p(q)     Reset from diagnostic |     |                                        |                       |       |            |
| Generate q(p) Reset from analytical     |     | Show: All 🔻 🖓                          | Show short names 👔    | 1     |            |
| Show average pressure                   |     |                                        |                       | 5     |            |
| Fast model with approximation: 5 %      |     | Reference Well                         |                       |       | ^          |
| Strictly honor null rate period         |     | Number of fractures                    | 15                    |       |            |
| 10.0000                                 | - 1 | Fracture half length                   | 325.943               | ft    | •          |
|                                         | - 1 | Well length                            | 4000.00               | ft    | •          |
|                                         |     | Stimulated zones around fractures      |                       |       |            |
| Proxy model                             | ^   | Wellbore model                         | None                  |       | -          |
| Fractured horizontal as SRVB            |     | Include constraints                    | $\checkmark$          |       |            |
| Fractured horizontal as SRVB            | - 1 | Max surface rate constraint (Producer) | 4000.00               | STB/D | -          |
| A Fractured horizontal as trilinear     | ~   | Min surface rate constraint (Injector) | 0.00000               | STB/D | -          |
| Butterfly                               |     | Reservoir                              |                       |       | ~          |
| Time stepping                           | ~   | Initial pressure                       | 9000.00               | psia  | •          |
| Numerical settings                      | ~   | Variable type                          | Bubble point pressure |       | -          |
|                                         |     | Init. bubble point                     | 8280.90               | psia  | •          |
|                                         |     | Transmissibility                       | 0.2                   | md ft | •          |

![](_page_16_Picture_5.jpeg)

#### Efficient Proxies for Numerical Simulation of Unconventional Resources, Artus et al., 1896873-MS URTEC Conference Paper (2014)

![](_page_17_Picture_0.jpeg)

# **Composite zones**

![](_page_17_Picture_2.jpeg)

Composite limits are now allowed to cross fractures to simulate enhanced area close to the well

| Region #1      |                                   |    | ^                   |
|----------------|-----------------------------------|----|---------------------|
| Reservoir type | Homogeneous                       |    | •                   |
| М              | 1.00000                           |    | Ŧ                   |
| D              | 1.00000                           |    | $\overline{\nabla}$ |
| Net-to-gross   | 1.00000                           |    | $\overline{\tau}$   |
| Region #2      |                                   |    | ^                   |
| Reservoir type | Homogeneous                       |    | •                   |
| М              | Homogeneous                       | N  |                     |
| D              | Dual porosity pseudo steady state | ЬS |                     |
| Net-to-gross   | 1.00000                           |    | Ŧ                   |

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

![](_page_18_Picture_0.jpeg)

# **DFN Upscaling**

![](_page_18_Picture_2.jpeg)

DFN upscaling reduces the refinement of the grid (and gridblock count), correctly accounting for the matrix-to-fracture flow and interaction

- DFN added in Map X
- Upscaling parameters are available in Grid

| DFN upscaling         | $\checkmark$ |    |
|-----------------------|--------------|----|
| DFN resolution        | 4.00000      | ft |
| DFN coarse resolution | 50.0000      | ft |

Min gridblock size changes from 'DFN resolution' to 'DFN coarse resolution'

![](_page_18_Figure_8.jpeg)

![](_page_18_Figure_9.jpeg)

#### Stochastic DFN realizations **\**

![](_page_19_Picture_1.jpeg)

#### 'Map' $\rightarrow$ 'DFN' $\rightarrow$ 'Generate'

#### Location can be defined $\mu$ -seismic, if loaded

![](_page_19_Figure_5.jpeg)

| Global settings                                                                                                                |                                                        |                    |          |   |                                     |            |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------|----------|---|-------------------------------------|------------|
| Fissures parameters                                                                                                            |                                                        |                    |          |   |                                     | ~          |
| Number of fissures                                                                                                             |                                                        |                    | 50       |   |                                     |            |
| Use microseismics events                                                                                                       |                                                        |                    |          |   |                                     |            |
| X minimum                                                                                                                      |                                                        |                    | -2500.00 | D |                                     | ft         |
| X maximum                                                                                                                      |                                                        |                    | 2500.00  | 0 |                                     | ft         |
| Y minimum                                                                                                                      |                                                        |                    | -1500.00 | D |                                     | ft         |
| Y maximum                                                                                                                      |                                                        |                    | 1500.00  |   |                                     | ft         |
| Impose random generator se                                                                                                     | ed                                                     |                    |          |   |                                     |            |
|                                                                                                                                |                                                        |                    |          |   |                                     |            |
| Fissure families<br>Family parameters                                                                                          |                                                        |                    | ^        |   | Family name                         | Add        |
| Fissure families<br>Family parameters<br>Fraction                                                                              | 0.5                                                    | Fracti             | ^<br>on  | • | Family name<br>Family 1             | Add        |
| Fissure families<br>Family parameters<br>Fraction<br>Minimum fissure length                                                    | 0.5                                                    | Fracti             | on       | Þ | Family name<br>Family 1<br>Family 2 | Add Delete |
| Fissure families<br>Family parameters<br>Fraction<br>Minimum fissure length<br>Maximum fissure length                          | 0.5<br>200.000<br>300.000                              | Fracti<br>ft<br>ft | on       | ŀ | Family name<br>Family 1<br>Family 2 | Add Delete |
| Fissure families<br>Family parameters<br>Fraction<br>Minimum fissure length<br>Maximum fissure length<br>Power                 | 0.5<br>200.000<br>300.000<br>1.50000                   | Fracti<br>ft<br>ft | on       | Þ | Family name<br>Family 1<br>Family 2 | Add Delete |
| Fissure families<br>Family parameters<br>Fraction<br>Minimum fissure length<br>Maximum fissure length<br>Power<br>Strike angle | 0.5<br>200.000<br>300.000<br>1.50000<br><b>30.0000</b> | Fracti<br>ft<br>ft | on       | ŀ | Family name<br>Family 1<br>Family 2 | Add Delete |

# Interference with DFN: FMM **W**

#### At least 2 wells must exist in the map

![](_page_20_Picture_2.jpeg)

'Map'  $\rightarrow$  'DFN'  $\rightarrow$  'Generate'

Interference time is an input to constrain the DFN

A number of realizations are run using Fast Marching (flow in fractures only) to pick one closest to the interference time

![](_page_20_Figure_6.jpeg)

Then a full model is run in

![](_page_20_Figure_7.jpeg)

![](_page_20_Picture_8.jpeg)

ζαρρδ

![](_page_21_Picture_0.jpeg)

#### Accelerated initialization

![](_page_21_Picture_2.jpeg)

Large models with multiple MFHWs are initialized using specific faster procedures

![](_page_21_Figure_4.jpeg)

# Loading properties of fracs

![](_page_22_Picture_1.jpeg)

The option allows loading individual fracture properties for a complex MFHW from a file

- MFHW well modeling type should be set as 'Complex'
- 'Load' button is available in the well dialog
- Tick the options prior to loading a file:
  - Half-length
  - Fracture position (MD)
  - Angle to the wellbore
  - Individual properties (w,  $F_{CD}$ ,  $\phi$ )
  - Offset

| Geometry and properties - Fracture #4 |         |       |  |
|---------------------------------------|---------|-------|--|
| Measured depth                        | 7631.17 | ft    |  |
| Fracture half length                  | 1134.53 | ft    |  |
| Fracture angle                        | 67.8886 | ۰     |  |
| Fracture offset                       | 192.914 | ft    |  |
| Fracture height                       | 400.000 | ft    |  |
| Fracture conductivity                 | 150.000 | md.ft |  |
| Fracture width                        | 0.01    | ft    |  |
| Fracture porosity                     | 0.1     |       |  |

![](_page_22_Picture_12.jpeg)

| oad from   | file               |                     |          |                           |           |                   | ? X |
|------------|--------------------|---------------------|----------|---------------------------|-----------|-------------------|-----|
| Data Sour  | ce                 |                     |          | Separat                   | tors      |                   |     |
| C:\Users\k | ostyleva\Desktop\F | ractures definition | - Nc ••• | ☑ Spa<br>☑ Tab<br>Others: | ice<br>;  |                   |     |
| Column     | Column 1           | Column 2            | Colu     | mn 3                      | Column 4  | Column 5          |     |
| Туре       | Fracture name      | MD Start            | Xf       |                           | Angle     | Offset            | •   |
| Unit       |                    | ft                  | ft       |                           | •         | UnDefined         |     |
| 1          | Fracture name      | MD                  | Xf       |                           | Angle     | Fracture na<br>Xf | ime |
| 2          |                    |                     | [ft]     |                           | [degrees] | MD Start          |     |
| 3          | Fracture #1        | 6000                | 462.     | 151                       | 67.1651   | Angle             |     |
| 4          | Fracture #2        | 6361.64             | 550.     | 908                       | 67.5127   | Width v           |     |
| 5          | Fracture #3        | 7060.38             | 300      |                           | 63.117    | -6.92786          |     |
| 6          | Fracture #4        | 7631.17             | 1134     | 1.53                      | 67.8886   | 192.914           |     |
| 7          | Fracture #5        | 8822.01             | 635.     | 809                       | 48.9681   | 250.219           |     |
| 8          | Fracture #6        | 9350.3              | 300      |                           | 53.0675   | -42.3358          |     |
| 9          | Fracture #7        | 9920.6              | 630.     | 716                       | 51.8192   | -209.228          |     |
| 10         | Fracture #8        | 11110.2             | 559.     | 728                       | 58.7486   | -311.902          |     |
| 11         | Fracture #9        | 11576.7             | 667.     | 894                       | 58.7188   | -166.042          |     |
| 12         | Fracture #10       | 12235               | 300      |                           | 69.9204   | -83.1065          |     |

\_oad from fracturing software 💔 🏑

#### Fracture properties can be non-uniform along the fracture plane

|  | Settings                |                          |
|--|-------------------------|--------------------------|
|  | Name:                   | Field H Well 25          |
|  | Unique Well ID:         |                          |
|  | Well type:              | Horizontal fractured 🔹   |
|  | Radial composite        | 🗌 Multiple fractures 🛛 🗲 |
|  | Time dependent          | Inflow control devices   |
|  | Geometry and properties | ^ <b>_</b>               |
|  | Modeling type           | Complex                  |
|  | Drill floor elevation   | 0.00000 ft               |

|   | Radial composite              | Multiple fractu | res 🗲   |   |
|---|-------------------------------|-----------------|---------|---|
|   | Time dependent                | Inflow control  | devices |   |
|   | Geometry and properties       |                 | ^       | * |
| E | Modeling type                 | Complex         |         |   |
|   | Drill floor elevation         | 0.00000         | ft      |   |
|   | Well radius                   | 0.3             | ft      |   |
|   | Drain angle                   | 0.00000         | •       |   |
|   | Well length                   | 2000.00         | ft      |   |
|   | Zw                            | 15.0000         | ft      | U |
|   | Import fracture data          |                 |         |   |
|   | Stimulated zones around fract |                 | ] V3    |   |
|   | Rate dependent skin           |                 | ]       |   |
|   | Location                      |                 | ^       |   |
|   | Input well head               |                 | ]       |   |
|   | X                             | -1000.00        | ft      |   |
|   | Y                             | 0.00000         | ft.     | Ŧ |

- Define a MFHW as 'Complex'
- Activate 'Import fracture data'
- Load properties from \*.csv or \*.xml:
  - Index, TVD and location at the well

ΔΡΡΔ

- (X,Z):  $w_f$ ,  $k_f$ ,  $F_{CD}$ ,  $\varphi$ ,  $\beta$
- Define fracture MD and angles

![](_page_24_Picture_0.jpeg)

#### **Microseismics**

![](_page_24_Picture_2.jpeg)

Load and display of microseismic events to constrain the MFHW configuration

#### Visualizing attributes: date, amplitude, stage index

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_25_Picture_0.jpeg)

#### **Stimulated zones**

![](_page_25_Picture_2.jpeg)

Stimulated zones around fractures of a MFHW

- Available for both Simple and Complex well types
- Defined by radius of the zone, k and  $\varphi$  multipliers

| Parameters                        |                       |         |  |
|-----------------------------------|-----------------------|---------|--|
|                                   |                       |         |  |
| Show: All                         | Show shore            | t names |  |
| Well 1                            |                       |         |  |
| Modeling type                     | Simple                |         |  |
| Drain angle                       | 0.00000               | ۰       |  |
| Fracture model                    | Infinite conductivity |         |  |
| Number of fractures               | 13                    |         |  |
| Fracture half length              | 360.000               | ft      |  |
| Fracture height                   | 30.0000               | ft      |  |
| Fracture mid-point height         | 15.0000               | ft      |  |
| Width                             | 0.00328084            | ft      |  |
| Fracture angle                    | 90.0000               | ۰       |  |
| Zw                                | 15.0000               | ft      |  |
| Well length                       | 2000.00               | ft      |  |
| Stimulated zones around fractures |                       |         |  |
| Stimulation radius                | 50.0000 h             | ft      |  |
| Permeability multiplier           | 4.00000               |         |  |
| Porosity multiplier               | 1.00000               |         |  |
| Rate dependent skin               |                       |         |  |
| Wellbore model                    | None                  |         |  |
| Bottomhole MD                     | 6000.00               | ft      |  |

These parameters can be regressed upon in 'Improve'

| nprove     |                       |
|------------|-----------------------|
| Parameters | Targets               |
|            |                       |
| Constant p | arameters             |
| - V        | Vell 1                |
|            | Theta                 |
|            | Ν                     |
|            | Xf                    |
|            | Hf                    |
|            | Zf                    |
|            | Width                 |
|            | Beta                  |
|            | Zw                    |
|            | Lw                    |
| •          | Stimulation radius    |
|            | k multiplier          |
| •          | phi multiplier        |
|            | Parameters Constant p |

![](_page_25_Picture_9.jpeg)

Compatible with numerical SRVB/Trilinear models

![](_page_26_Picture_0.jpeg)

Refrac

![](_page_26_Picture_2.jpeg)

The option allows opening some MFHW fractures at a later time

- Well is set as a MFHW
- Fractures are Finite conductivity
- (a) **Regular** refrac pattern:

| Refrac                    |         | $\checkmark$ |              |
|---------------------------|---------|--------------|--------------|
| Refrac elapsed time       | 18.0000 | Month 🛛 🔻    | → <b>T</b>   |
| Number of fractures at t0 | 12      |              | → <i>a</i> _ |
| Refrac ratio              | 4       |              | > <b>b</b>   |
| Infil                     |         |              |              |

#### (b) **Irregular** refrac pattern:

- Complex MFHW + indiv.properties
- Each fracture has its own refrac time T

Before refrac (time = 0): After refrac (time = T):  $N_f = a$   $N_f = a + b (a - 1)$ 

![](_page_26_Figure_12.jpeg)

![](_page_26_Picture_13.jpeg)

#### (c) **Infill** option:

• All fractures start with matrix properties and switch to high conductivity at refrac elapsed time T

![](_page_27_Picture_0.jpeg)

### Multiple KrPc

![](_page_27_Picture_2.jpeg)

Natural fissures

Matrix, well fractures and natural fissures can have independent sets of KrPc

Multiphase PVT is defined & real PVT are used

| <b>**</b>                                              |                                              | R                                         | $\checkmark$                                 |                                               |
|--------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------------------|
|                                                        |                                              | Natural fissures                          | DF                                           | Load Generate Delete Export                   |
|                                                        |                                              | DFN ? X                                   |                                              | Redefine KrPc in natural fissures             |
| PVT and                                                | Generate numerical model                     |                                           |                                              |                                               |
| Diffusion Matrix                                       | Main options ^                               |                                           | Properties                                   | Apply unconsolidation in natural fissures     |
| PVT & diffusion                                        | Include other wells                          | Load Generate Delete Export               |                                              |                                               |
| PVT & diffusion Analytical modeling Namerical modeling | Reset from analytical                        |                                           | Reservoir properties                         |                                               |
| PVT                                                    | Show average pressure                        |                                           | Topology                                     | Property set definition                       |
|                                                        | Output ^                                     |                                           |                                              | Name: Default                                 |
| Single phase     Reference fluid: Gim                  | Output result fields Output result fields    | Apply unconsolidation in natural fissures | Uniform Layered Regional Complex             | Show: All V V Show short names 🙀 V            |
|                                                        | Output well drainage results (Rubis only)    |                                           | Click to edit, right-dick to assign          |                                               |
| Define advanced PVT:                                   | Advanced                                     | Parameters                                | Default                                      | Reservoir type Homogeneous 👻 🖵                |
| Diffusion                                              | Advanced .                                   | General ^ *                               | Layer #1 Default                             | Permeability Constant • 33.3333 md •          |
| Diffusion                                              | Time dependent 🕔                             | Origin Generated                          |                                              | Porosity Constant V 0.1                       |
| Relative permeability:                                 | Use well intake                              | Number of fissures 150                    |                                              | kz/kr 1.00000                                 |
|                                                        | Redefine KPC in bydraulic fractures          | Total Xf 14460.8 ft 🔻                     |                                              | Lower layer leakage 1.00000                   |
| 🗌 Unconsolidation:                                     |                                              | Average Xf 96.4051 ft 🔻                   |                                              | Rock compressibility 3.00000E-6 psi=1 - ancel |
|                                                        | Apply unconsolidation in hydraulic fractures | Global fissures physical parameters       | Well fractures                               | Matrix                                        |
| Desorption:                                            |                                              | Model type Finite conductivity            | Well Haddies                                 |                                               |
|                                                        | Use DFN                                      | Porosity 0.1 v                            | Redefine KrPc in hydraulic fractures         | KrPc: Default                                 |
|                                                        | Time stenning v                              | Width 0.00328084 ft •                     |                                              |                                               |
|                                                        |                                              | Conductivity 10.00000 md.ft •             | Apply unconsolidation in hydraulic fractures | Initial state: Default                        |
|                                                        | Numerical settings V                         |                                           |                                              | Pressure dependent properties: Default        |
|                                                        |                                              | Cancel                                    |                                              |                                               |
|                                                        | Keep dialog open                             |                                           |                                              | Desorption: Default                           |
|                                                        |                                              | 16                                        | Geothermal                                   |                                               |
|                                                        | OK Cancel                                    |                                           | groutri                                      |                                               |
|                                                        |                                              |                                           |                                              | OK Cancel                                     |
|                                                        |                                              |                                           |                                              | 11.                                           |

### Numerical 'butterfly' model

The butterfly model is the numerical counterpart of the multi-zone fractional dimension (MZFD) analytical model. The model solves on a 1D simplified geometry, but benefits from accounting for the non-linearities.

- Constant thickness geometry
- The width of the area perpendicular to the flux varies with a power-law relationship
- Wellbore: constant / changing
- Boundary: infinite / circular / linear

![](_page_28_Picture_6.jpeg)

ΚΑΡΡΑ

![](_page_29_Picture_0.jpeg)

# **CSG Well Intake**

![](_page_29_Picture_2.jpeg)

Available when:

- PVT is defined as 'Dry gas + Water'
- Annular well intake

#### Assumptions:

- Steady-state flow
- Water level is an input

![](_page_29_Picture_9.jpeg)

![](_page_30_Picture_0.jpeg)

#### **Fractal MFHW**

A 💼

![](_page_30_Picture_2.jpeg)

![](_page_30_Figure_3.jpeg)

MZFD model parameters are used to generate a fractal MFHW with an equivalent response Fractional Dimension Workflow

Transferrable results O All results

Prectoral dimension degrast

Zone #1

New in v5.40.02

**KAPPA** 

Integrated MZFD model workflow: parameters read from diagnostic lines on the loglog plot used to initialize the model

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

Cumulative Volume Loglog Plot 🧡 🏑

New in v5.40.02

**KAPPA** 

#### An additional diagnostic plot for the 'butterfly' model behavior:

![](_page_32_Figure_3.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

# **THANK YOU**

![](_page_33_Picture_3.jpeg)